scholarly journals Screening Cotoneaster sp. for Resistance to Fire Blight Using Foliar Inoculation with Two Strains of Erwinia amylovora

HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Kristin E. Neill ◽  
Ryan N. Contreras ◽  
Virginia O. Stockwell ◽  
Hsuan Chen

The genus Cotoneaster is composed of ≈400 species with a wide variety of growth habits and forms. These hardy landscape shrubs used to be commonplace because of their low maintenance and landscape functionality. However, the interest in and sales of cotoneaster have decreased for a variety of reasons, with the greatest being its susceptibility to a bacterial disease fire blight caused by Erwinia amylovora. The resistances of 15 different genotypes of Cotoneaster to a wild-type strain of Erwinia amylovora (Ea153) and a strain LA635 that has a natural mutation in avrRpt2 that encodes for a type III secretion effector were tested separately by inoculating leaves. Fire blight resistance was assessed by calculating the percent shoot necrosis (PSN) [PSN = 100 × (lesion length ÷ total branch length)] at 6 to 8 weeks after inoculation. Across all experiments, Cotoneaster genotypes H2011-01-002 and C. ×suecicus ‘Emerald Sprite’ consistently had the lowest PSN values when inoculated with either strain. Cotoneaster ×suecicus ‘Emerald Beauty’ was significantly more resistant to Ea153 than to LA635, whereas C. splendens was significantly more susceptible to Ea153 than to LA635.

2002 ◽  
Vol 68 (11) ◽  
pp. 5704-5710 ◽  
Author(s):  
Abdelhamid Jabrane ◽  
Ahmed Sabri ◽  
Philippe Compère ◽  
Philippe Jacques ◽  
Isabel Vandenberghe ◽  
...  

ABSTRACT Serratia plymithicum J7 culture supernatant displayed activity against many pathogenic strains of Erwinia amylovora, the causal agent of the most serious bacterial disease of apple and pear trees, fire blight, and against Klebsiella pneumoniae, Serratia liquefaciens, Serratia marcescens, and Pseudomonas fluorescens. This activity increased significantly upon induction with mitomycin C. A phage-tail-like bacteriocin, named serracin P, was purified from an induced culture supernatant of S. plymithicum J7. It was found to be the only compound involved in the antibacterial activity against sensitive strains. The N-terminal amino acid sequence analysis of the two major subunits (23 and 43 kDa) of serracin P revealed high homology with the Fels-2 prophage of Salmonella enterica, the coliphages P2 and 168, the φCTX prophage of Pseudomonas aeruginosa, and a prophage of Yersinia pestis. This strongly suggests a common ancestry for serracin P and these bacteriophages.


2014 ◽  
Vol 67 ◽  
pp. 145-150
Author(s):  
M.B. Horner ◽  
E.G. Hough ◽  
D.I. Hedderley ◽  
N.M. How ◽  
V.G.M. Bus

Fire blight a bacterial disease caused by Erwinia amylovora is an ongoing problem for pipfruit growers with few control options available Most commercial cultivars and rootstocks are highly susceptible to the disease Breeding of fire blightresistant scions and rootstocks to manage the disease is a major goal of the New Zealand apple breeding programme The main mode of disease establishment is through flowers However the breeding programme currently evaluates disease resistance through shoot inoculations This study compared the degree of resistance in 109 progeny from a Royal Gala times; Malus robusta Robusta 5 family assessed by shoot inoculation and by floral inoculations Results indicate that the two measures of resistance do not correlate well and that different quantitative trait loci may be involved in flower and shoot resistance Management of fire blight through the implementation of resistant cultivars will require resistance screening on both shoot and flower assessments


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan Schröpfer ◽  
Isabelle Vogt ◽  
Giovanni Antonio Lodovico Broggini ◽  
Andreas Dahl ◽  
Klaus Richter ◽  
...  

AbstractMost of the commercial apple cultivars are highly susceptible to fire blight, which is the most devastating bacterial disease affecting pome fruits. Resistance to fire blight is described especially in wild Malus accessions such as M. × robusta 5 (Mr5), but the molecular basis of host resistance response to the pathogen Erwinia amylovora is still largely unknown. The bacterial effector protein AvrRpt2EA was found to be the key determinant of resistance response in Mr5. A wild type E. amylovora strain and the corresponding avrRpt2EA deletion mutant were used for inoculation of Mr5 to induce resistance or susceptible response, respectively. By comparison of the transcriptome of both responses, 211 differentially expressed genes (DEGs) were identified. We found that heat-shock response including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs) are activated in apple specifically in the susceptible response, independent of AvrRpt2EA. Further analysis on the expression progress of 81 DEGs by high-throughput real-time qPCR resulted in the identification of genes that were activated after inoculation with E. amylovora. Hence, a potential role of these genes in the resistance to the pathogen is postulated, including genes coding for enzymes involved in formation of flavonoids and terpenoids, ribosome-inactivating enzymes (RIPs) and a squamosa promoter binding-like (SPL) transcription factor.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Andreas Peil ◽  
Christine Hübert ◽  
Annette Wensing ◽  
Mary Horner ◽  
Ofere Francis Emeriewen ◽  
...  

Abstract Background Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. Results We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible ‘Idared’ and ‘Royal Gala’ in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the ‘Idared’ × Mr5 population with Erwinia amylovora over several years, and of the ‘Royal Gala’ × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the ‘Idared’ × Mr5 and an ‘M9’ × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. Conclusions This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.


2002 ◽  
Vol 38 (SI 1 - 6th Conf EFPP 2002) ◽  
pp. S139-S140
Author(s):  
M.N. Brisset ◽  
J.S. Venisse ◽  
J.P. Paulin

Erwinia amylovora is the causal agent of fire blight, a bacterial disease of apple and pear. Pathogenicity determinants of the bacteria are identified (hrp-dsp cluster, capsule, siderophore) but molecular mechanisms leading to susceptibility or resistance of the plant are not yet understood. To address this question, we challenged two genotypes of apple, known for their contrasting susceptibility to fire blight, with a wild-type strain of E. amylovora (Ea wt), an avirulent hrp mutant of this bacteria (Ea hrp) or a wild-type strain of the incompatible pathogen Pseudomonas syringae pv. tabaci (Pst wt). Mechanisms usually related to resistance responses were investigated i.e. oxidative stress, accumulation of PR-proteins and induction of genes encoding various enzymes of the phenylpropanoid pathway. Results showed two kinds of responses (i) some mechanisms were elicited in both susceptible and resistant genotypes by Ea wt and Pst wt with similar kinetics and not induced by Ea hrp, (ii) others were specifically repressed by Ea wt in its susceptible host, when induced by Pst wt and Ea hrp. These results suggest several hypothesis about the cross-talk between E. amylovora and its host plants.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 413-415 ◽  
Author(s):  
Andrew C. Bell ◽  
Thomas G. Ranney ◽  
Thomas A. Eaker ◽  
Turner B. Sutton

Fire blight, caused by the bacterium Erwinia amylovora (Burrill) Winslow et al., is one of the most destructive diseases of plants in the Rosaceae subfamily Maloideae. Artificial inoculations, using E. amylovora strain E2002a, were conducted to determine levels of resistance to fire blight among taxa of flowering pears (Pyrus L. spp.) and quince (Chaenomeles Lindl. spp.). The level of resistance was measured as the length of the fire blight lesion as a percentage of overall shoot length. Considerable variation in resistance was observed among both pears and quince. Pyrus ussuriensis Maxim. `Prairie Gem' was highly resistant with a lesion length of 1% of the total shoot length. Pyrus calleryana Decne. `Bradford' was intermediate with a 50% lesion length while P. calleryana `Chanticleer' was significantly more resistant with a lesion length of 31%. Nine pear taxa were highly susceptible and did not differ significantly from 100% disease severity (total shoot death). Chaenomeles speciosa (Sweet) Nak. `Contorta' was highly resistant with a lesion length of 15%. Six quince taxa, including C. × superba (Frahm) Rehd. `Cameo', `Texas Scarlet', and `Jet Trail' were highly susceptible while nine other taxa showed intermediate resistance.


2020 ◽  
Vol 33 (11) ◽  
pp. 1277-1279 ◽  
Author(s):  
Menghao Yu ◽  
Jugpreet Singh ◽  
Awais Khan ◽  
George W. Sundin ◽  
Youfu Zhao

Erwinia amylovora causes fire blight, the most devastating bacterial disease of apples and pears in the United States and worldwide. The model strain E. amylovora Ea1189 has been extensively used to understand bacterial pathogenesis and molecular mechanisms of bacterial-plant interactions. In this work, we sequenced and assembled the de novo genome of Ea1189, using a combination of long Oxford Nanopore Technologies and short Illumina sequence reads. A complete gapless genome assembly of Ea1189 consists of a 3,797,741-bp circular chromosome and a 28,259-bp plasmid with 3,472 predicted genes, including 78 transfer RNAs, 22 ribosomal RNAs, and 20 noncoding RNAs. A comparison of the Ea1189 genome to previously sequenced E. amylovora complete genomes showed 99.94 to 99.97% sequence similarity with 314 to 946 single nucleotide polymorphisms. We believe that the availability of the complete genome sequence of strain Ea1189 will further support studies to understand evolution, diversity and structural variations of Erwinia strains, as well as the molecular basis of E. amylovora pathogenesis and its interactions with host plants, thus facilitating the development of effective management strategies for this important disease.


Author(s):  
J. Sehic ◽  
H. Nyboom ◽  
L. Garkava-Gustavsson ◽  
A. Patocchi ◽  
M. Kellerhals ◽  
...  

The invasive bacterial disease fire blight, caused by Erwinia amylovora has the potential to destroy fruit tree orchards all over Europe. Effective plant protection methods are lacking in many countries, highlighting the increasing importance placed on identification of germplasm with heritable disease resistance. Recent l y. a promising QTL (quantitative trait locus) was identified on linkage group 7 in the apple cultivar 'Fiesta· which is derived from ·cox's Orange Pippin' . I n the present study, 144 Swedish and foreign apple cultivars were analysed with the SCAR markers AE I 0-375 and GE-8019. which flank-. this QTL. Twenty-nine of the analysed cultivars had both markers. 78 had either AE I 0-375 or GE-8019, and 37 cultivars did not carry an) of the two markers. Seventeen cultivars. 7 with both markers and I 0 not having either of the two markers, were then inocoluted with the bacterium in a 4uaran1i ne greenhouse test. Cultivars carrying both DNA markers were significantly less susceptible than cultivars lacking the markers, P<0.001. Cultivars that were most resistant had both markers and had 'Cox· in their pedigree. Unrelated cultivars with the markers may still lack the QTL.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1189-1192 ◽  
Author(s):  
P.G. Braun ◽  
P.D. Hildebrand ◽  
A.R. Jamieson

Twenty-five cultivars of red raspberry (Rubus idaeus L.) and one purple raspberry (R. occidentalis L. × R. idaeus L.) were evaluated for their resistance to fire blight caused by Erwinia amylovora (Burr.) Winslow et al. Actively growing raspberry cane tips were wound inoculated with three isolates of the pathogen and disease development was assessed over 17 days. Three methods of evaluating resistance were used: area under the disease progress curve (AUDPC), a weighted AUDPC called the area under the disease severity curve (AUDSC), and lesion length. A wide range of resistance levels was observed, but no cultivars were symptomless. Primocane-fruiting cultivars tended to be more resistant than floricane-fruiting ones. Of the three E. amylovora isolates used in this study, one was significantly more virulent than the other two, but no cultivar × isolate interaction was detected.


2017 ◽  
Vol 107 (4) ◽  
pp. 403-411 ◽  
Author(s):  
Suzanne M. Slack ◽  
Quan Zeng ◽  
Cory A. Outwater ◽  
George W. Sundin

Fire blight, caused by the pathogen Erwinia amylovora, is the most devastating bacterial disease of pome fruit in North America and worldwide. The primary method of dispersal for E. amylovora is through ooze, a mass of exopolysaccharides and bacterial cells that is exuded as droplets from infected host tissue. During the 2013 and 2014 field seasons, 317 ooze droplets were collected from field-inoculated apple trees. Populations of E. amylovora in ooze droplets were 108 CFU/μl on average. Ooze droplets harboring larger (>108 CFU/μl) cell populations were typically smaller in total volume and had darker coloring, such as orange, red, or dark red hues. Examination of apple host tissue at the site of emergence of ooze droplets using scanning electron microscopy revealed that ooze was not exuding through natural openings; instead, it was found on erumpent mounds and small (10-μm) tears in tissue. These observations suggested that E. amylovora-induced wounds in tissue provided the exit holes for ooze extrusion from the host. Analyses of E. amylovora populations in ooze droplets and within the stems from which ooze droplets emerged indicated that approximately 9% of the total bacterial population from infected stems is diverted to ooze. Gene expression analyses indicated that E. amylovora cells in stem sections located above ooze droplets and in ooze droplets were actively expressing critical pathogenicity genes such as hrpL, dspE, and amsK. Thus, our study identified ooze as a source of large, concentrated populations of E. amylovora that emerged from the host by rupturing host tissue. Because the cells in ooze droplets are expressing genes required for pathogenesis, they are already primed for infection should they be dispersed from ooze to new infection courts.


Sign in / Sign up

Export Citation Format

Share Document