scholarly journals Effects of Rootstock, Tree Density and Training System on Early Growth, Yield and Fruit Quality of Blush Pear

HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Lexie McClymont ◽  
Ian Goodwin ◽  
Desmond Whitfield ◽  
Mark O’Connell ◽  
Susanna Turpin

Vegetative growth, orchard productivity, fruit quality and marketable yield were evaluated for rootstock (D6, BP1 and Quince A), tree density (741–4444 trees/ha), and training system (Open Tatura trellis, two-dimensional vertical and three-dimensional traditional) effects on young trees of the blush pear cultivar ‘ANP-0131’. ‘ANP-0131’ is a vigorous scion and vegetative growth, precocity, and yield were influenced by the selected rootstocks. Tree density and training system treatments exerted a substantial effect on canopy radiation interception while increasing tree density improved yield. Increasing tree density from 2222 (high density) to 4444 (ultra-high density) trees/ha did not improve cumulative yield. Crop load affected fruit size, such that “marketable” yield (yield of fruit weighing between 150 and 260 g) was greatest for trees on D6 rootstock and trained to Open Tatura trellis at high and ultra-high densities.

2007 ◽  
Vol 58 (11) ◽  
pp. 1068 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Partial rootzone drying (PRD) is a new irrigation strategy whereby water is withheld from part of the rootzone while another part is well watered. A successful PRD strategy should reduce tree water use through stomatal control of transpiration and reduce vegetative growth while maintaining fruit size and yield. A field experiment examined crop water relations and production performance of PRD in a commercial apple orchard on loam soil in the Goulburn Valley, Australia. The orchard consisted of high-density (1420 trees/ha) 8-year-old ‘Pink Lady’ apple trees trained as central leader and irrigated by microjets. The effects of PRD on leaf/stem water potential, vegetative growth, yield components and fruit quality were investigated during two seasons (2001–02, Year 1 and 2002–03, Year 2). The 2-year average growing season reference crop evapotranspiration and rainfall was 954 and 168 mm, respectively. Three irrigation treatments were established: (1) deficit irrigation (DI, supplied 50% of water to a fixed side of tree); (2) PRD supplied 50% of water to alternating sides of tree; (3) and conventional irrigation (CI, supplied 100% water to both sides of tree). Irrigation inputs under the CI treatment were 334 and 529 mm for Year 1 and Year 2, respectively. In Year 1, the volume of irrigation applied to CI treatment inputs equated to the replacement of predicted crop evapotranspiration (ETc) based on a mid-season FAO-56 crop coefficient with adjustment for tree size. Vegetative growth, fruit production and water status showed both PRD and DI treatments led to a classical ‘deficit irrigation’ water stress response. Leaf water potential, leaf conductance, fruit size, shoot growth and yield were reduced on PRD and DI trees compared to the fully watered (CI) trees. In Year 2, CI inputs exceeded estimated ETc by 2-fold. Consequently, minimal or no differences between irrigation regimes were measured in stem water potential, vegetative growth, yield components and fruit quality. Fruit disorders (sunburn, russet, misshape, markings, frost damage) were not affected by irrigation regime in either season. We contend that further effort is required to determine under what circumstances or environments there is a PRD response that saves water and maintains yield and quality for apple.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 573-579 ◽  
Author(s):  
Juan I. Valiente-Banuet ◽  
Alejandro Gutiérrez-Ochoa

In Mexico, piquin peppers are highly valued horticultural products with limited cultivated production due to low seed germination, morphologic and genetic variability, disease susceptibility, and limited environmental physiology information. The objective of this study was to evaluate the effects of irrigation frequency and shade level treatments on vegetative growth, yield, and fruit quality of a commercial ecotype of piquin pepper. The study was conducted during two consecutive years using a hierarchical linear mixed-effects model design, with yearly data of irrigation frequency as main treatment blocks and shade levels as secondary blocks (nested within irrigation frequency treatments). Our results indicate that more frequent irrigation and increased shade levels favored vegetative growth. In addition, moderate shade levels (interception of 35% of full sunlight) and daily irrigation provided the best conditions for fruit production. This effect could be attributed to an increase in vegetative growth (thus higher photosynthetic and crop load capacity); more moderate conditions (temperatures and relative humidity) that favored flowering and fruit set, or a combination of these factors. Fruit size and pungency were not significantly affected by the treatments. Our results provide basic information for the development of guidelines for the cultivation of piquin pepper plants.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 554B-554
Author(s):  
Richard P. Marini

`Norman' peach trees were trained to the central-leader or open-vase form and were planted at high (740 trees/ha) or low (370 trees/ha) density. A third density treatment was a high/low density, where alternate trees in high-density plots were removed after 6 years to produce a low-density treatment. Annual yield per hectare was ≈15% to 40% greater for high-density treatments than for low-density treatments, but tree form had little influence on yield. Fruit size tended to be greater for low-density than for high-density treatments, but cumulative marketable yield was greatest for high-density and lowest for high/low density treatments. After 9 years, cumulative crop value was higher for open-vase than central-leader treatments (P = 0.12), but tree density had less of an effect on crop value (P = 0.21). Cumulative costs were highest for high-density treatments, but were not influenced by tree form. Income minus costs was nearly $4500/ha higher for open-vase than for central-leader trees and net present value was more than $2000/ha higher for high-density than low-density trees (P = 0.20). Open-vase trees were more profitable than central leader trees and should be planted at densities of about 700 trees/ha in the mid-Atlantic region.


2021 ◽  
Vol 12 (3) ◽  
pp. 193-199
Author(s):  
R. F. Mohamed ◽  
A. A. R. Atawia ◽  
H. E. M. EL-Badawy ◽  
A. M. Abd- Al-Rahman ◽  
S. F. EL-Gioushy

HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Gerry H. Neilsen ◽  
Denise Neilsen ◽  
Frank Kappel ◽  
T. Forge

‘Cristalina’ and ‘Skeena’ sweet cherry cultivars (Prunus avium L.) on Gisela 6 (Prunus cerasus × Prunus canescens) rootstock planted in 2005 were maintained since 2006 in a randomly blocked split-split plot experimental design with six blocks of two irrigation frequency main plot treatments within which two cultivar subplots and three soil management sub-subplots were randomly applied. The focus of this study was the growth, yield, and fruit quality response of sweet cherry to water and soil management over three successive fruiting seasons, 2009–11, in a cold climate production area. The final 2 years of the study period were characterized by cool, wet springs resulting in low yield and yield efficiency across all treatments. Soil moisture content (0- to 20-cm depth) during the growing season was often higher in soils that received high-frequency irrigation (HFI) compared with low-frequency irrigation (LFI). HFI and LFI received the same amount of water, but water was applied four times daily in the HFI treatment but every other day in the LFI treatment. Consequently, larger trunk cross-sectional area (TCSA) and higher yield were found on HFI compared with LFI trees. Soil management strategies involving annual bloom time phosphorus (P) fertigation and wood waste mulching did not affect tree vigor and yield. Increased soluble solids concentration (SSC) occurred with LFI. Decreased SSC occurred with delayed harvest maturity in trees receiving P fertigation at bloom. The largest fruit size was correlated for both cultivars with low crop loads ranging from 100 to 200 g fruit/cm2 TCSA. Overall cool, wet spring weather strongly affected annual yield and fruit quality, often overriding cultivar and soil and water management effects.


2018 ◽  
Vol 28 (4) ◽  
pp. 459-469 ◽  
Author(s):  
Matthew B. Bertucci ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Jonathan R. Schultheis ◽  
Penelope Perkins-Veazie ◽  
...  

Grafting watermelon (Citrullus lanatus) is a common practice in many parts of the world and has recently received increased interest in the United States. The present study was designed to evaluate early season growth, yield, and fruit quality of watermelon in response to grafting and in the absence of known disease pressure in a fumigated system. Field experiments were conducted using standard and mini watermelons (cv. Exclamation and Extazy, respectively) grafted onto 20 commercially available cucurbit rootstocks representing four species: giant pumpkin (Cucurbita maxima), summer squash (Cucurbita pepo), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash [ISH (C. maxima × Cucurbita moschata)]. Nongrafted ‘Exclamation’ and ‘Extazy’ were included as controls. To determine early season growth, leaf area was measured at 1, 2, and 3 weeks after transplant (WAT). At 1 WAT, nongrafted ‘Exclamation’ produced the smallest leaf area; however, at 3 WAT, nongrafted ‘Exclamation’ produced the largest leaf area in 2015, and no differences were observed in 2016. Leaf area was very similar among rootstocks in the ‘Extazy’ study, with minimal differences observed. Marketable yield included fruit weighing ≥9 and ≥3 lb for ‘Exclamation’ and ‘Extazy’, respectively. In the ‘Exclamation’ study, highest marketable yields were observed in nongrafted ‘Exclamation’, and ‘Exclamation’ grafted to ‘Pelops’, ‘TZ148’, and ‘Coloso’, and lowest marketable yields were observed when using ‘Marvel’ and ‘Kazako’ rootstocks, which produced 47% and 32% of nongrafted ‘Exclamation’ yield, respectively. In the ‘Extazy’ study, the highest marketable yield was observed in nongrafted ‘Extazy’, and ‘Kazako’ produced the lowest yields (48% of nongrafted ‘Extazy’). Fruit quality was determined by measuring fruit acidity (pH), soluble solids concentration (SSC), lycopene content, and flesh firmness from a sample of two fruit from each plot from the initial two harvests of each year. Across both studies, rootstock had no effect on SSC or lycopene content. As reported in previous studies, flesh firmness was increased as a result of grafting, and nongrafted ‘Exclamation’ and ‘Extazy’ had the lowest flesh firmness among standard and mini watermelons, respectively. The present study evaluated two scions with a selection of 20 cucurbit rootstocks and observed no benefits in early season growth, yield, or phytonutrient content. Only three of 20 rootstocks in each study produced marketable yields similar to the nongrafted treatments, and no grafted treatment produced higher yields than nongrafted ‘Exclamation’ or ‘Extazy’. Because grafted seedlings have an associated increase in cost and do not produce increased yields, grafting in these optimized farming systems and using fumigated soils does not offer an advantage in the absence of soilborne pathogens or other stressors that interfere with watermelon production.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 288 ◽  
Author(s):  
Rana Shahzad Noor ◽  
Zhi Wang ◽  
Muhammad Umair ◽  
Muhammad Yaseen ◽  
Muhammad Ameen ◽  
...  

The density of herbaceous crops creates a suitable environment to produce pathogens in the soil that intensify the attack of pathogens traditionally controlled by disinfectant, which are mostly prohibited and unlisted because of their toxicity. Grafting is an alternative technique to enhance abiotic stress tolerance and reduce root diseases due to soil-borne pathogens, thus enhancing crop production. This research study was conducted during the crop season of 2017 and 2018 in order to investigate the interactive effect of different grafting techniques of hybrid scion onto local rootstocks on plants survival, plant phenological growth, fruit yield and fruit quality under a controlled environment. The hybrid cucumber was also planted self-rooted. The cucumber (Cucumis sativus L.) cv. Kalaam F1, Syngenta was grafted onto four local cucurbitaceous rootstocks; ridge gourd (Luffa operculate Cogn.), bitter gourd (Momordica charantia L.), pumpkin (Cucurbita pepo L.), bottle gourd (Lagenaria siceraria (Molina) Standl.) using splice grafting, tongue approach, single cotyledon and hole insertion grafting techniques and self-rooted hybrid cucumber under greenhouse conditions. The experimental results indicated that all local cucurbitaceous rootstocks showed a high compatibility with hybrid cucumber scion in the splice grafting method compared to other grafting and non-grafted methods. Lagenaria siceraria rootstocks were found highly compatible with cucumber cv Kalaam scion which gave significantly maximum plant survival rates (95%) due to high sap contents, high SPAD value, better vegetative growth and maximum fruit yield when compared with other rootstocks by employing the splice grafting method followed by tongue approach, single cotyledon and hole insertion grafting while the fruit quality of all rootstocks was observed to be similar. The non-grafted cucumber cv. Kalaam F1 showed significant results of plant vegetative growth, fruit development and fruit quality and encountered grafting methods while the lowest result were associated with the hole insertion grafting method in all scion/rootstock combinations. The grafted plants have no significant effect on cucumber fruit dry matter and fruit quality while the fruit mineral compositions (N, P, K, Ca and Mg) were higher among grafted and non-grafted plant fruits. The results indicate that grafting hybrid cucumber onto four local cucurbitaceous rootstocks influenced growth, yield and fruit quality. Grafting can be alternative and control measure for soil-borne disease and to enhance cucumber production.


Sign in / Sign up

Export Citation Format

Share Document