scholarly journals Fertilization and Growth of Field-grown Citrus Nursery Trees in Florida

2008 ◽  
Vol 18 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Frederick S. Davies ◽  
Glenn Zalman

The objective of this study was to determine the effects of various levels of nitrogen (N) on growth of ‘Hamlin’ orange (Citrus sinensis) trees on Carrizo citrange (C. sinensis × Poncirus trifoliata) rootstock in a field nursery. Newly budded liners were obtained from commercial nurseries and received from 0 to 3976 kg N per treated hectare annually (8N–0P–6.6K) in 14 applications per season. Tree trunk diameter, height, and dry weight were measured in two separate experiments. Total dry weight and trunk diameter were greatest for trees receiving 794 kg·ha−1 N annually during both seasons. However, annual N rates more than 1589 kg·ha−1 reduced trunk diameters and dry weight compared with the optimum N rate during both seasons. Leaf N concentration and N rate were positively correlated in both seasons, but leaf N concentration was poorly correlated with tree trunk diameter and dry weight. Therefore, very high rates of N fertilization may actually reduce ‘Hamlin’ orange tree growth in field nurseries when growing in an Arredondo fine sand.

1996 ◽  
Vol 6 (4) ◽  
pp. 383-387 ◽  
Author(s):  
Laura Guazzelli ◽  
Frederick S. Davies ◽  
James J. Ferguson

Our objectives were to determine the effects of leaf N concentration in citrus nursery trees on subsequent growth responses to fertilization for the first 2 years after planting and the impact of N fertilizer rate on soil NO3-N concentration. `Hamlin' orange [Citrus sinensis (L.) Osb.] trees on `Swingle' citrumelo rootstock [C. paradisi Macf. × P. trifoliata (L.) Raf.] were purchased from commercial nurseries in Apr. 1992 (Expt. 1) and Jan. 1993 (Expt. 2) and were grown in the greenhouse at differing N rates. Five months later, trees for each experiment were separated into three groups (low, medium, and high) based on leaf N concentration and were planted in the field in Oct. 1992 (Expt. 1) or Apr. 1993 (Expt. 2). Trees were fertilized with granular material (8N-2.6P-6.6K-2Mg-0.2Mn-0.12Cu-0.27Zn-1.78Fe) with N at 0, 0.11, 0.17, 0.23, 0.28, or 0.34 kg/tree per year. Soil NO3-N levels were determined at 0- to 15- and 16- to 30-cm depths for the 0.11-, 0.23-, and 0.34-kg rates over the first two seasons in Expt. 2. Preplant leaf N concentration in the nursery varied from 1.4% (Expt. 1) to 4.1% (Expt. 2) but had no effect on trunk diameter, height, shoot growth and number, or dry weight in year 1 (Expt. 1) or years 1 and 2 (Expt. 2) in the field. Similarly, fertilizer rate in the field had no effect on growth during year 1 in the field. However, trunk diameter increased with increasing N rate in year 2 and reached a maximum with N at 0.17 kg/tree per year but decreased at higher rates. Shoot number during the second growth flush in year 2 was much lower for nonfertilized vs. fertilized trees at all rates, which had similar shoot numbers. Nevertheless, leaf N concentrations increased during the season for trees with initially low levels, even for trees receiving low fertilizer rates. This suggests translocation of N from other organs to leaves. Soil NO3-N levels were highest for the 0.34-kg rate and lowest at the 0.11-kg rate. Within 2 to 3 weeks of fertilizing, NO3-N levels decreased rapidly in the root zone.


2015 ◽  
Vol 25 (5) ◽  
pp. 602-607
Author(s):  
Yung-Liang Peng ◽  
Fang-Yin Liu ◽  
Rong-Show Shen ◽  
Yu-Sen Chang

Nitrogen (N) is a major element required for crop cultivation and an important factor affecting plant growth and development. Malabar chestnut (Pachira macrocarpa) is an important ornamental potted plant crop whose N requirement has been studied, and a rapid monitoring method to manage N fertilization during its commercial production is yet to be established. Malabar chestnut seedlings were fertilized weekly with 0, 4, 8, 16, or 24 mm N. After 12 weeks, 16 mm N was found to yield the greatest plant growth such as plant height, number of nodes, and total leaf area. Measurements of chlorophyll meter readings, leaf chlorophyll concentration, leaf N concentration, and leaf dry weight all indicated that the optimal level of N fertilization was 16 mm N. A chlorophyll meter can be used to monitor nondestructively whether sufficient N has been supplied to support optimal plant growth. In this study, a chlorophyll meter reading of 46.1 corresponded with a critical leaf N concentration of 2.65%, defined as the leaf N concentration when the leaf dry weight was at 90% of saturation point. Additional N supplied beyond this critical level increased foliar chlorophyll content and improved the rate of net photosynthesis. Therefore, chlorophyll meter readings, which are convenient and nondestructive can serve as a reliable reference for commercial production in monitoring N requirement for optimum growth of malabar chestnut. Weekly fertilization of malabar chestnut with 16 mm N and maintaining leaf chlorophyll meter readings between 46.1 and 58.4 are recommended.


2016 ◽  
Vol 4 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Binglin Chen ◽  
Hongkun Yang ◽  
Weichao Song ◽  
Chunyu Liu ◽  
Jiao Xu ◽  
...  

2005 ◽  
Vol 15 (3) ◽  
pp. 565-571 ◽  
Author(s):  
C. Jasso-Chaverria ◽  
G.J. Hochmuth ◽  
R.C. Hochmuth ◽  
S.A. Sargent

Two greenhouse cucumber (Cucumis sativus) cultivars with differing fruit types [European (`Bologna') and Beit-alpha (`Sarig')] were grown during two seasons in a perlite medium in black plastic nursery containers in a passively ventilated greenhouse in northern Florida to evaluate fruiting responses to nitrogen (N) fertilization over the range of 75 to 375 mg·L–1. Fruit production, consisting mostly of fancy fruits, increased quadratically with N concentration in the nutrient solution, leveling off above 225 mg·L–1 for both cucumber cultivars. Fruit length and diameter were not affected by N concentration in the nutrient solution. Leaf N concentration, averaged over three sampling dates, increased linearly with N concentration in the nutrient solution from 46 g·kg–1 with 75 mg·L–1 N to 50 g·kg–1 with 375 mg·L–1 N. Fruit firmness decreased with increasing N concentration and there was little difference in firmness between the two cultivars. Firmness was similar across three measurement dates during the spring harvest season, but increased during the season in the fall. Fruit color responses to N concentration were dependent on the specific combination of experiment, sampling date, and cultivar. For most combinations of experiment, sampling date, and cultivar, cucumber epidermal color was greener (higher hue angle) with increased N concentration. The color was darkest (lowest L* value) and most intense (highest chroma value) with intermediate to higher N concentrations.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 613e-614
Author(s):  
Laura Guazzelli ◽  
Frederick S. Davies ◽  
James J. Ferguson

Our objectives were to determine if leaf N concentration in citrus nursery trees affected subsequent growth responses to fertilization for the first 2 years after planting and how N fertilizer rate affected soil nitrate-N concentration. `Hamlin' orange [Citrus sinensis (L.) Osb.] trees on `Swingle' citrumelo rootstock [C. paradisi Macf. × P. trifoliata (L.) Raf.] were purchased from commercial nurseries and grown in the greenhouse at differing N rates. Three to five months later trees were separated into three groups (low, medium, high) based on leaf N concentration and planted in the field in Oct. 1992 (Expt. 1) or Apr. 1993 (Expt. 2). Trees were fertilized with granular material (8N–2.6P–6.6K) with N at 0 to 0.34 kg/tree yearly. Soil nitrate-N levels were also determined in Expt. 2. Preplant leaf N concentration in the nursery varied from 1.4% to 4.1% but had no effect on trunk diameter, height, shoot growth, and number or dry weight in year 1 (Expt. 1) or years 1 and 2 (Expt. 2) in the field. Similarly, N fertilizer rate had no effect on growth during year 1 in the field. However, trunk diameter increased with increasing N rate in year 2 and reached a maximum with N at 0.17 kg/tree yearly. Shoot number during the second growth flush in year 2 was much lower for nonfertilized vs. fertilized trees. Leaf N concentrations increased during the season for trees with initially low levels even for trees receiving low fertilizer rates. Soil nitrate-N levels were highest at the 0.34-kg rate, and lowest at the 0.11-kg rate. Nitrate-N levels decreased rapidly in the root zone within 2 to 3 weeks of fertilizing.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1197
Author(s):  
Siyeon Byeon ◽  
Kunhyo Kim ◽  
Jeonghyun Hong ◽  
Seohyun Kim ◽  
Sukyung Kim ◽  
...  

(1) Background: Down-regulation of photosynthesis has been commonly reported in elevated CO2 (eCO2) experiments and is accompanied by a reduction of leaf nitrogen (N) concentration. Decreased N concentrations in plant tissues under eCO2 can be attributed to an increase in nonstructural carbohydrate (NSC) and are possibly related to N availability. (2) Methods: To examine whether the reduction of leaf N concentration under eCO2 is related to N availability, we investigated understory Fraxinus rhynchophylla seedlings grown under three different CO2 conditions (ambient, 400 ppm [aCO2]; ambient × 1.4, 560 ppm [eCO21.4]; and ambient × 1.8, 720 ppm [eCO21.8]) and three different N concentrations for 2 years. (3) Results: Leaf and stem biomass did not change under eCO2 conditions, whereas leaf production and stem and branch biomass were increased by N fertilization. Unlike biomass, the light-saturated photosynthetic rate and photosynthetic N-use efficiency (PNUE) increased under eCO2 conditions. However, leaf N, Rubisco, and chlorophyll decreased under eCO2 conditions in both N-fertilized and unfertilized treatments. Contrary to the previous studies, leaf NSC decreased under eCO2 conditions. Unlike leaf N concentration, N concentration of the stem under eCO2 conditions was higher than that under ambient CO2 (4). Conclusions: Leaf N concentration was not reduced by NSC under eCO2 conditions in the understory, and unlike other organs, leaf N concentration might be reduced due to increased PNUE.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1065D-1065
Author(s):  
Michael Smith

Supplemental nitrogen applications were tested to reduce irregular bearing and improve yield on drip-irrigated pecan (Caryaillinoinensis Wangenh. C. Koch. cv. Mohawk) trees planted in 1989. Treatments were: 1) no N fertilization; 2) 75 kg·ha-1 N in March; 3) 75 kg·ha-1 N in March plus 50 kg·ha-1 N in August; and 4) 75 kg·ha-1 N in March plus 50 kg·ha-1 N in October. Withholding N did not reduce July leaf N concentration compared to the other treatments until the sixth year of the study. Trees receiving N had similar July leaf N concentrations regardless of treatment throughout the study. October leaf N concentrations were unaffected by treatment, except in 2002, when withholding N suppressed leaf N compared to other treatments. The percentage of fruiting shoots was lower when supplemental N was applied in October compared to August during 2 of 6 years. Otherwise, the percentage of fruiting shoots was unaffected by treatment. Weight per nut and kernel percentage were not affected by treatment, except kernel percentage was lower during 1 year when supplemental N was applied in August compared to October. Kernel grade was usually not affected by treatment.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 146-148 ◽  
Author(s):  
Chao-Yi Lin ◽  
Der-Ming Yeh

Guzmania lingulata (L.) Mez. ‘Cherry’ plants were grown in coconut husk chips. All plants were given 8 mm nitrogen (N), 2 mm phosphorus (P), 4 mm calcium (Ca), and 1 mm magnesium (Mg) at each irrigation with potassium (K) concentration at 0, 2, 4, or 6 mm. After 9 months, K concentration did not alter the number of new leaves, and shoot and root dry weights. Increasing K concentration did not affect the length but increased the width of the most recently fully expanded leaves (the sixth leaves). Plants under 0 K exhibited yellow spots and irregular chlorosis on old leaves being more severe at the middle of the blade and leaf tip. Numbers of leaves with yellow spots or chlorosis decreased with increasing K concentration. Chlorenchyma thickness was unaffected by K concentration, whereas water storage tissue and total leaf thickness increased with increasing K concentration. Leaf N concentration in the sixth or 10th leaf was unaffected by solution K concentration. However, plants at 0 mm K had higher N concentration in the 14th leaf than those in sixth and 10th leaves. Leaf P, Ca, and Mg concentrations decreased with increasing solution K concentration. K concentrations were higher in the sixth leaf than the 14th leaf in plants at 0, 2, or 4 mm K, whereas leaf K concentration was 15 g·kg−1 on dry weight basis in the sixth, 10th, or 14th leaves in plants treated with 6 mm K.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 468a-468
Author(s):  
L. Guazzelli ◽  
F.S. Davies ◽  
J.J. Ferguson

Two experiments were conducted with containerized `Hamlin' orange trees (Citrus sinensis [L.] Osb.) on `Swingle' citrumelo (C. paradisi Macf. × Poncirus trifoliata [L.] Raf.) rootstock to study the effects of N rate on growth of plants in the nursery. Treatments consisted of the following N rates: 12, 50, 100 and 200 mg·liter-1 applied once a week through drip irrigation. In Expt. 1, fertilization at the 200 mg·liter-1 rate resulted in greater scion growth, trunk diameter and total leaf dry weight as compared to the other rates. In Expt. 2, application of 100 and 200 mg·liter-1 rates resulted in greater scion growth and trunk diameter as compared to lower rates, but no differences were seen between the two highest rates. Trees receiving the 12 and 50 mg·liter-1 rates were stunted and leaves were chlorotic. Therefore, the optimum N rate for trees on `Swingle' citrumelo rootstock is between 100 and 200 mg·liter-1, although the 200 mg·liter-1 rate may not be economically justified. Moreover, the N rate for nursery plants growing on `Swingle' citrumelo rootstock in commercial medium may be higher than for other rootstocks, where rates less than 50 mg·liter-1 produce optimum growth.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05718
Author(s):  
Md. Akhter Hossain Chowdhury ◽  
Taslima Sultana ◽  
Md. Arifur Rahman ◽  
Tanzin Chowdhury ◽  
Christian Ebere Enyoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document