Concepts and Practices for Improving Nitrogen Management for Vegetables

1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.

1999 ◽  
Vol 9 (4) ◽  
pp. 601-606 ◽  
Author(s):  
Charles A. Sanchez ◽  
Thomas A. Doerge

Nitrogen (N) in a soil that is not immediately taken up by a crop is subject to leaching, denitrification and other mechanisms of loss. Nitrogen uptake studies identify the total amount of N accumulated by the crop and the period of peak demand. This information can be used to devise management strategies aimed at supplying N preceding anticipated uptake. Split sidedress application, fertigation, and use of controlled release fertilizers (CRN) are all viable options for N management, depending on the crop production scenario and available infrastructure. Soil and plant tissue testing can be useful feedback tools for adjusting N applications for soil contributions of N and unexpected N losses. Efficient irrigation is of paramount importance in achieving efficient N fertilization regardless of management practice.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 348
Author(s):  
Taylor E. Dill ◽  
Steven K. Harrison ◽  
Steven W. Culman ◽  
Alexander J. Lindsey

Flooding can reduce corn growth and yield, but nitrogen (N) management practices may alter the degree to which plants are negatively impacted. Damage caused by flooded conditions may also affect the utilization of a post-flood N application to increase yield. The objectives of this study were to evaluate how pre-plant and pre-plant plus post-flood N applications contribute to corn growth and yield following flood conditions and to quantify the partial return of employing different N management strategies in the event of a flood. A field study was conducted in Ohio using four flood durations (FD; 0, 2, 4, or 6 days initiated at V4 to V5) and three N management practices (0 kg N ha−1, 134 kg N ha−1 applied pre-plant, and 134 pre-plant + 67 kg N ha−1 applied post-flooding). Application of 134 kg N ha−1 increased yield compared to 0 kg N ha−1 by 65%, 68%, 43% and 16% for 0 d, 2 d, 4 d, and 6 d FD, respectively; the application of 134 + 67 kg N ha−1 increased grain yield compared to 134 kg N ha−1 by 7%, 27%, 70%, or 55% for 0 d, 2 d, 4 d, or 6 d FD, respectively. Partial return analysis produced similar results to those for grain yield. Results suggest that in regions prone to early-season flooding, additional N applied post-flood can improve yield and partial return compared to the application of pre-plant alone at a lower rate or no N. Results indicate that total soil nitrate-N levels two weeks after flood initiation may serve as a good predictor of yield.


2012 ◽  
Vol 92 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Yadeta Anbessa ◽  
Patricia Juskiw

Anbessa, Y. and Juskiw, P. 2012. Review: Strategies to increase nitrogen use efficiency of spring barley. Can. J. Plant Sci. 92: 617–625. Improvement in nitrogen use efficiency (NUE) is important to reduce input costs and the negative impact of excessive N on the environment. This review found that barley growers in western Canada have over the years adopted a number of improved N management strategies including soil testing and adjusting rate of N fertilization accordingly, switching from fall application to spring application of N fertilizers, and side-dressing placement of N that gives plant roots easier access to N nutrition. However, it is our opinion that use of variable N rates, choice of N fertilizer type that is less susceptible to losses, and improved manure management are some of the areas where further increase in NUE should be sought. As well, barley germplasms show substantial differences in NUE and genetic selection could increase NUE. Genetic improvement of NUE in barley should be possible both by the traditional breeding approach of crossing and pyramiding NUE genes from across different sources as well as through the development of transgenic barley. The integration of improved N management practices and more efficient cultivars may bring about a significant increase in NUE and ultimately grain yield of barley under the target moderate rate of N application.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 769F-769
Author(s):  
C.A. Sanchez

Lettuce produced in the desert typically shows large yield responses to N fertilization. However, concern about the potential threat of nitrate-N to ground-water has prompted additional studies aimed at developing improved N management practices. Field experiments were conducted between 1992 and 1995 to evaluate the response of crisphead lettuce to controlled-release N fertilizer (CRN). The use of CRN was compared to a soluble N fertilizer applied preplant (PP), and a soluble N fertilizer applied in split-sidedress applications (SD). Rates of N fertilizer application ranged from 0 to 300 kg·ha–1. Lettuce generally showed significant responses to N rate and N management practice. However, response to management practice varied by site-season. When conditions for N loss were high, SD and CRN management strategies were superior. However, in other site-seasons, SD management sometimes resulted in inferior head quality and marketable yield when compared to other management strategies. Data averaged over six site-seasons shoed improved yield and quality to CRN management strategies compared to PP and SD strategies.


2001 ◽  
Vol 1 ◽  
pp. 10-16 ◽  
Author(s):  
James L. Baker

The primary mode of nitrogen (N) loss from tile-drained row-cropped land is generally nitrate-nitrogen (NO3-N) leaching. Although cropping, tillage, and N management practices can be altered to reduce the amount of leaching, there are limits as to how much can be done. Data are given to illustrate the potential reductions for individual practices such as rate, method, and timing of N applications. However, most effects are multiplicative and not additive; thus it is probably not realistic to hope to get overall reductions greater than 25 to 30% with in-field practices alone. If this level of reduction is insufficient to meet water quality goals, additional off-site landscape modifications may be necessary.


Author(s):  
S. Selvakumar ◽  
S. Sakthivel ◽  
Akihiko Kamoshita ◽  
R. Babu ◽  
S. Thiyageshwari ◽  
...  

A field experiment was conducted at Tamil Nadu Agricultural University, Agricultural College and Research Institute, Madurai, Tamil Nadu, India, during summer 2019 to study about the changes in physiological parameters of rice under various establishment and water management strategies and to find out the suitable method of rice establishment and irrigation management practices for tank irrigated command areas during water scarcity situation. Field experiment comprised of four establishment methods in combination with four irrigation management strategies. Medium duration fine grain rice variety TKM 13 was used for the study. Results of the study revealed that machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack recorded improved physiological parameters and yield. It was on par with machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface. Higher gross return, net return and B:C ratio were observed with machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack. This was followed by machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil. Hence, the result of study concluded that machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface can be recommended as the suitable technology for the farmers of tank irrigated command area to get higher return with minimum use of resources under water scarcity situation.


2018 ◽  
Vol 9 (2) ◽  
pp. 202-210
Author(s):  
Ricardo Henrique Ribeiro ◽  
Marcos Renan Besen ◽  
Samuel Luiz Fioreze ◽  
Jonatas Thiago Piva

The objective of this study was to verify early nitrogen (N) fertilization on maize cultivated in succession to black oats. We conducted three experiments, relating to the 2012/13, 2013/14, and 2014/15 growing seasons, at UFSC-Curitibanos, in a randomized complete block experimental design, with four treatments and four replicates. The treatments were N management strategies in which the amount of N applied to maize was split into pre-sowing, at sowing, and topdressing times: (T1) control with no N application; (T2) 2/3 - 1/3 - 0; (T3) 1/3 - 1/3 - 1/3; and (T4) 0 - 1/3 - 2/3. The biometrics and productive potential parameters of the crop were evaluated. Application of N, regardless of the treatment, increased the yield. In 2012/13, there were no significant differences between the ways in which the N application was split, although they produced a higher yield than the control, resulting in a mean yield of 5,008 kg ha-1. In 2013/14, T2 was similar to T3 and T4, resulting in a yield of 9,858 kg ha-1; in 2014/15, T3 and T4 were similar, with a mean yield of 12,466 kg ha-1, while T2 resulted in a lower yield of 10,487 kg ha-1. When 2/3 of the N is applied pre-sowing, it is only effective when it is associated with the occurrence of a drought period at an early developmental stage of the plants. In adequate rainfall conditions, the early application of N fertilization is only effective when combined with a further 1/3 of the amount of N at sowing, and later as a topdressing.


HortScience ◽  
2015 ◽  
Vol 50 (7) ◽  
pp. 1055-1063 ◽  
Author(s):  
S. Castro Bustamante ◽  
T.K. Hartz

Organic processing tomato (Solanum lycopersicum L.) production is a significant industry in California, yet little nitrogen (N) fertility research is available to guide N management. A total of 37 certified organic processing tomato fields in the Sacramento Valley of California were monitored during the 2012 and 2013 production seasons, with two objectives: 1) to document current N management practices and 2) to investigate the utility of early-season soil and plant N monitoring techniques in predicting seasonal crop N sufficiency. Between ≈3 and 11 weeks after transplanting (WAT) soil mineral N (SMN), leaf N and petiole NO3-N were determined every other week. In 22 fields, whole plant N concentration at ≈11 WAT was determined as a measure of crop N sufficiency. Growers were surveyed regarding N management practices used and fruit yields achieved. Net N mineralization (Nmin) was measured for 20 fields soils by aerobic laboratory incubation. Carbon mineralization (Cmin) in 24 hours following rewetting of air-dried soil and water extractable organic nitrogen (WEON) and carbon (WEOC) were also determined and evaluated as predictors of Nmin. Nitrogen management was primarily based on the application of manure or manure compost in the fall. Organic fertilizers were applied mainly in spring (pre- and post-transplanting). SMN in the top 60 cm at 3 WAT ranged from 6 to 32 mg·kg−1. About 30% of fields were N deficient by 11 WAT. Sensitivity analysis showed that SMN (whether measured from 0 to 30 or 0 to 60 cm) and leaf N at 5 WAT correctly predicted late-season plant N status in >60% of the fields. Nmin in 28 days ranged from 8 to 31 mg·kg−1, representing an average of 2% of total soil N. Correlation between Nmin and Cmin was weak (r = 0.44, P = 0.051) while stronger correlations were observed between Nmin and WEOC, WEON and total soil N (r = 0.63, 0.61 and 0.51, respectively, all P < 0.03). A multiple linear regression model that used 3 WAT SMN (0–30 cm) and WEON as independent variables improved Nmin prediction (adj. R2 = 0.67). Significant fruit yield increase with sidedress N application of feather meal at 5–6 WAT was observed in 2 of 4 field trials, demonstrating the ability to remedy a soil N limitation identified by early-season N monitoring.


2018 ◽  
Vol 3 (4) ◽  
pp. 54 ◽  
Author(s):  
Glenn Baxter ◽  
Panarat Srisaeng ◽  
Graham Wild

Airports are an essential infrastructure to facilitate aviation. The substantial growth of aviation has led to a significant increase in water usage by airports. Airports also generate large volumes of wastewater that may include contaminants. Hence, understanding sustainable water management practices is essential in the aviation industry. In this study, an exploratory research design was utilized in the examination of the sustainable water management strategies and systems at Kansai International Airport from 2002 to 2016. The qualitative data were examined using document analysis as part of a case study. The quantitative data were analyzed using regression analysis as part of a longitudinal study. The airport has been able to reduce the total water consumption, water consumption per passenger, and water consumption per aircraft movement, even with increased traffic in recent years. The airport sources water from the municipal authorities and reclaims water for non-potable water uses. The airport conducts regular water quality tests which measure the Chemical oxygen demand, total nitrogen, and total phosphates. The airport’s onsite wastewater processing centre processes all wastewaters, which discharges non-reclaimed water into Osaka Bay. With a decrease in water consumption, there has similarly been a decrease in the need to treat wastewater, while the reclaimed water ratio has increased over the period of the study.


Sign in / Sign up

Export Citation Format

Share Document