scholarly journals Using Nutrient Uptake Patterns to Develop Efficient Nitrogen Management Strategies for Vegetables

1999 ◽  
Vol 9 (4) ◽  
pp. 601-606 ◽  
Author(s):  
Charles A. Sanchez ◽  
Thomas A. Doerge

Nitrogen (N) in a soil that is not immediately taken up by a crop is subject to leaching, denitrification and other mechanisms of loss. Nitrogen uptake studies identify the total amount of N accumulated by the crop and the period of peak demand. This information can be used to devise management strategies aimed at supplying N preceding anticipated uptake. Split sidedress application, fertigation, and use of controlled release fertilizers (CRN) are all viable options for N management, depending on the crop production scenario and available infrastructure. Soil and plant tissue testing can be useful feedback tools for adjusting N applications for soil contributions of N and unexpected N losses. Efficient irrigation is of paramount importance in achieving efficient N fertilization regardless of management practice.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 556e-556
Author(s):  
C.A. Sanchez

Nitrogen in a soil that is not immediately taken up by a crop is subject to leaching, denitrification, and other mechanisms of loss. Generally, split applications of N throughout the growing season reduce the potential for N loss compared to a single preplant application. Timing of N application should account for the characteristic N uptake patterns of the crop and the lag time between application of fertilizers and plant availability. N uptake studies allow one to identify total amount of N accumulated by the crop and periods of peak nitrogen demand. This information can then be used to devise management strategies aimed at supplying N preceding anticipated N uptake. Split sidedress N application, fertigation, and the use of controlled-release fertilizers are all viable options, depending on the crop production scenario and available infrastructure.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 769F-769
Author(s):  
C.A. Sanchez

Lettuce produced in the desert typically shows large yield responses to N fertilization. However, concern about the potential threat of nitrate-N to ground-water has prompted additional studies aimed at developing improved N management practices. Field experiments were conducted between 1992 and 1995 to evaluate the response of crisphead lettuce to controlled-release N fertilizer (CRN). The use of CRN was compared to a soluble N fertilizer applied preplant (PP), and a soluble N fertilizer applied in split-sidedress applications (SD). Rates of N fertilizer application ranged from 0 to 300 kg·ha–1. Lettuce generally showed significant responses to N rate and N management practice. However, response to management practice varied by site-season. When conditions for N loss were high, SD and CRN management strategies were superior. However, in other site-seasons, SD management sometimes resulted in inferior head quality and marketable yield when compared to other management strategies. Data averaged over six site-seasons shoed improved yield and quality to CRN management strategies compared to PP and SD strategies.


1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.


Nitrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 34-51
Author(s):  
Amitava Chatterjee

Nitrogen (N) losses from field crops have raised environmental concerns. This manuscript accompanies a database of N loss studies from non-legume field crops conducted across the conterminous United States. Cumulative N losses through nitrous oxide-denitrification (CN2O), ammonia volatilization (CNH3), and nitrate leaching (CNO3−) during the growing season and associated crop, soil, and water management information were gathered to determine the extent and controls of these losses. This database consisted of 404, 26, and 358 observations of CN2O, CNH3, and CNO3− losses, respectively, from sixty-two peer-reviewed manuscripts. Corn (Zea mays) dominated the N loss studies. Losses ranged between −0.04 to 16.9, 2.50 to 50.9, and 0 to 257 kg N ha−1 for CN2O, CNH3 and CNO3−, respectively. Most CN2O and CNO3− observations were reported from Colorado (n = 100) and Iowa (n = 176), respectively. The highest values of CN2O, and CNO3− were reported from Illinois and Minnesota states, and corn and potato (Solanum tuberosum), respectively. The application of anhydrous NH3 had the highest value of CN2O loss, and ammonium nitrate had the highest CNO3− loss. Among the different placement methods, the injection of fertilizer-N had the highest CN2O loss, whereas the banding of fertilizer-N had the highest CNO3− loss. The maximum CNO3− loss was higher for chisel than no-tillage practice. Both CN2O and CNO3− were positively correlated with fertilizer N application rate and the amount of water input (irrigation and rainfall). Fertilizer-N management strategies to control N loss should consider the spatio-temporal variability of interactions among climate, crop-and soil types.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Mariangela Diacono ◽  
Paola Baldivieso-Freitas ◽  
Francisco Sans Serra

Optimization of the nitrogen (N) inputs and minimization of nutrient losses strongly affect yields in crop rotations. The aim of this research was to evaluate the effect of agricultural practices on yield and N use in a 4-year cereal-legume rotation in organic farming and to identify the best combination of these practices. The following treatments were compared: conventional plough (P) vs. reduced chisel (RC) tillage; composted farmyard manure (F) vs. unfertilized control (NF); and green manure (GM) vs. no green manure (NoM). No significant differences were found for N use efficiency between P and RC in each crop. The results suggested that legumes in the tested rotation do not need supplemental N fertilization, particularly if combining GM and F. The use of composted farmyard manure should be considered in a long-term fertilization plan for cereals, to allow a higher efficiency in N use. The residual effect of fertilization over time, along with the site-specific pedo-climatic conditions, should also be considered. In both tested tillage approaches, soil N surplus was the highest in plots combining GM and F (i.e., more than 680 kg N ha−1 in combination with RC vs. about 140 kg N ha−1 for RC without fertilization), with a risk of N losses by leaching. The N deficit in NoM–NF both combined with P and RC would indicate that these treatment combinations are not sustainable for the utilized crops in the field experiment. Therefore, the combination of the tested practices should be carefully assessed to sustain soil fertility and crop production.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 669-673 ◽  
Author(s):  
Raul I. Cabrera

Seven nursery grade (8-9 month duration), polymer-coated, controlled-release fertilizers (CRF) were topdressed or incorporated into a 2 peat: 1 vermiculite: 1 sand (by volume) medium to yield the same amount of N per container. The pots (0.5 L) were uniformly irrigated with DI water every week to produce a target leaching fraction of 25%. Leachate N contents (ammonium plus nitrate), employed as indicators of N release, allowed for comparison of CRF performance as a function of temperature changes over a season. Two distinct N leaching (i.e., release) patterns were observed over the 180-day experimental period. The fertilizers Osmocote 18-6-12FS (Fast Start: OSM-FS), Prokote Plus 20-3-10 (PROK), Osmocote 24-4-8HN (High N: OSM-HN) and Polyon 25-4-12 (POLY) exhibited a N leaching pattern that closely followed changes in average daily ambient temperatures (Tavg) over the season. This relationship was curvilinear, with N leaching rates per pot (NLR) being highly responsive to Tavg changes between 20 and 25 °C. Temperatures above 25 °C produced an average maximum NLR of 1.27 mg·d-1 for these fertilizers. OSM-FS, PROK, and OSM-HN had the highest cumulative N losses over the experimental period. In contrast, the CRF group formed by Nutricote 18-6-8 (270: NUTR), Woodace 20-4-12 (WDC), and Osmocote 18-6-12 (OSM) showed a more stable N leaching pattern over a wider range of temperatures, with rates about 30% to 40% lower than those in the temperature-responsive CRF, and averaging a maximum NLR of 0.79 mg·d-1 for Tavg >25 °C. NUTR and WDC had the lowest cumulative N losses over the season. Soluble salt readings paralleled N leaching for each CRF, indicating similar leaching patterns for other nutrients. Incorporation produced significantly higher cumulative N losses than topdressing, but without effect on the actual N leaching pattern over the season. Regardless of the N formulation in the CRF, over 85% of the N recovered in the leachates was in the nitrate form.


2018 ◽  
Vol 9 (2) ◽  
pp. 202-210
Author(s):  
Ricardo Henrique Ribeiro ◽  
Marcos Renan Besen ◽  
Samuel Luiz Fioreze ◽  
Jonatas Thiago Piva

The objective of this study was to verify early nitrogen (N) fertilization on maize cultivated in succession to black oats. We conducted three experiments, relating to the 2012/13, 2013/14, and 2014/15 growing seasons, at UFSC-Curitibanos, in a randomized complete block experimental design, with four treatments and four replicates. The treatments were N management strategies in which the amount of N applied to maize was split into pre-sowing, at sowing, and topdressing times: (T1) control with no N application; (T2) 2/3 - 1/3 - 0; (T3) 1/3 - 1/3 - 1/3; and (T4) 0 - 1/3 - 2/3. The biometrics and productive potential parameters of the crop were evaluated. Application of N, regardless of the treatment, increased the yield. In 2012/13, there were no significant differences between the ways in which the N application was split, although they produced a higher yield than the control, resulting in a mean yield of 5,008 kg ha-1. In 2013/14, T2 was similar to T3 and T4, resulting in a yield of 9,858 kg ha-1; in 2014/15, T3 and T4 were similar, with a mean yield of 12,466 kg ha-1, while T2 resulted in a lower yield of 10,487 kg ha-1. When 2/3 of the N is applied pre-sowing, it is only effective when it is associated with the occurrence of a drought period at an early developmental stage of the plants. In adequate rainfall conditions, the early application of N fertilization is only effective when combined with a further 1/3 of the amount of N at sowing, and later as a topdressing.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 521
Author(s):  
Haiyan Liang ◽  
Pengfei Shen ◽  
Xiangze Kong ◽  
Yuncheng Liao ◽  
Yang Liu ◽  
...  

Lower nitrogen recovery efficiency (NRE) and negative environmental impacts caused by excessive nitrogen (N) fertilization threaten the sustainability of agriculture. Efficient and appropriate fertilization practices are extremely important to achieve higher crop yield with minimum N loss. A field microplot experiment was conducted in a wheat-maize rotation system in Shaanxi province, at North China Plain, using the 15N isotope tracer technique to qualify the different annual N managements in terms of crop yield, NRE, N distribution in plant-soil, and N losses to optimize the N management. The experiment included four N treatments: conventional practice with 510 kg ha−1 annually in four applications (N1), and three optimized N treatments, reducing N rate to 420 kg ha−1, adjusting topdressing fertilizer times and using slow-release fertilizer (SRF) (N2, N3, N4). The results showed that the grain yield and N uptake did not differ significantly among treatments. N from fertilizer taken up (Ndff) by wheat was not affected by N management; however, in maize, Ndff performed differently. Optimized treatments significantly decreased the Ndff as compared to N1 treatment. Furthermore, NRE of wheat and annual nitrogen recovery efficiency (annual NRE) did not differ among treatments in 2016 but significantly increased in 2017 compared to N1. Annual NRE in 2017 was similar to that obtained for wheat. For maize, optimized N managements decreased the NRE in N3 and N4 treatments of two years. Potential losses in wheat were also similar amongst treatments, but in maize, N3 and N4 had lower residual N in the soil’s top 60 cm but resulted in higher potential losses than N1 and N2. Overall, our results demonstrate that applying 420 kg N ha−1 annually in three applications and combining SRF and urea are effective to sustain crop yield, improve the efficiency of N usage by maize, and reduce N losses in this region.


2017 ◽  
Vol 155 (8) ◽  
pp. 1299-1310 ◽  
Author(s):  
J. M. GUO ◽  
J. Q. XUE ◽  
A. D. BLAYLOCK ◽  
Z. L. CUI ◽  
X. P. CHEN

SUMMARYOptimal nitrogen (N) management for maize in the film-mulched production systems that are widely used in dryland agriculture is difficult because top-dressing N is impractical. The current research determined how matching N supply and demand was achieved before and after silking stages, when single applications of controlled release urea (CRU) were combined with conventional urea in film-mulched maize production. The CRU: urea mixture was applied in a 1 : 2 or 2 : 1 ratio and all three fertilizer regimes (urea alone and CRU: urea at 1 : 2 or 2 : 1) were applied at N rates of 180 and 240 kg/ha over 2 years. The 1 : 2 CRU: urea mixture, applied once at 180 kg N/ha, was found to synchronize N supply with demand, thereby reducing N losses. The highest grain yields (11·8–12·0 t/ha), N uptake (232–239 kg/ha), N recovery (65·8–67·7%) and high net economic return were achieved with this regime. These results indicate that a single application of a mixture of CRU and urea can synchronize N supply with demand and provide higher yields and profits than conventional N fertilization in film-mulched maize systems.


2020 ◽  
Vol 1 (2) ◽  
pp. 82-85
Author(s):  
Shirisa Acharya ◽  
Subham Kaphle ◽  
Jaya Upadhayay ◽  
Abina Pokhrel ◽  
Sabina Paudel

Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a polyphagous pest which is arising as one of the major threats to agricultural crop production. It has around 80 host species that cause severe damage to cereals and vegetable crops. This pest was first discovered in Africa (2016) and first collected and reported in Nepal at Nawalparasi district on 9th may 2019. The larvae of FAW are found on young leaves, leaf whorls, tassels or cobs according to their growth stages. First instar larvae scrape leaves and shows pin-hole symptoms and window-pane feeding symptoms whereas in the later vegetative stages, damage results in skeletonised leaves and heavily windowed whorls. If climatic condition for pest establishment is suitable this pest could cause approximately 100% crop loss in maize if not managed in time. Regular scouting, push and pull method, black light traps, commonly available botanicals like neem locally available materials like ash and some recommended insecticides with recommended dose can be used for the control of fall armyworm. There is an urgent need for developing ecologically sustainable, economically profitable, and socially acceptable integrated pest management strategies to mitigate the impacts of the fall armyworm and not just rely on single management practice.


Sign in / Sign up

Export Citation Format

Share Document