scholarly journals Keeping Water and Nutrients in the Florida Citrus Tree Root Zone

2010 ◽  
Vol 20 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Thomas A. Obreza ◽  
Arnold Schumann

Florida citrus (Citrus spp.) producers must improve water and nutrient use efficiency to remain sustainable as they face increasing urbanization, plant disease, and environmental awareness. Producers have traditionally used water-soluble nitrogen (N) and phosphorus fertilizer sources with calendar-based irrigation, but they are slowly integrating enhanced efficiency fertilizers into nutrient management plans and converting to sensor or evapotranspiration-based irrigation scheduling. Recent research has improved the understanding of the citrus grove N budget, which has led to development of appropriate best management practices (BMPs) that will maintain production while protecting the environment. BMPs that have been shown to decrease N loss to groundwater include applying the appropriate fertilizer rate, splitting fertilizer applications, converting to fertigation, and improving irrigation scheduling.

2010 ◽  
Vol 20 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Thomas A. Obreza ◽  
Jerry B. Sartain

Florida's citrus (Citrus spp.), vegetable, and turfgrass industries must improve nitrogen (N) and phosphorus (P) fertilizer use efficiency to remain sustainable in an era of emerging environmental policies designed to protect water quality. Producers have traditionally used water-soluble N and P fertilizers because they are plentiful and economical. Improving nutrient use efficiency (NUE) is being addressed through implementation of best management practices (BMPs) such as nutrient management planning, proper fertilizer material selection, better application timing and placement, and improved irrigation scheduling. Emerging technology that will aid in this effort includes increased use of enhanced efficiency fertilizers (EEFs), organic soil amendments, fertigation, and foliar fertilization. However, any new technology shown to improve NUE must be economically feasible before it can be considered a BMP. Future research in this area will aim to improve the economics of EEFs and precision fertilizer application.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498c-498
Author(s):  
A. Fares ◽  
A.K. Alva ◽  
S. Paramasivam

Water and nitrogen (N) are important inputs for most crop production. The main objectives of nitrogen best management practices (NBMP) are to improve N and water management to maximize the uptake efficiency and minimize the leaching losses. This require a complete understanding of fate of N and water mass balance within and below the root zone of the crop in question. The fate of nitrogen applied for citrus production in sandy soils (>95% sand) was simulated using a mathematical model LEACHM (Leaching Estimation And Chemistry Model). Nitrogen removal in harvested fruits and storage in the tree accounted the major portion of the applied N. Nitrogen volatilization mainly as ammonia and N leaching below the root zone were the next two major components of the N mass balance. A proper irrigation scheduling based on continuous monitoring of the soil water content in the rooting was used as a part of the NBMP. More than 50% of the total annual leached water below the root zone was predicted to occur in the the rainy season. Since this would contribute to nitrate leaching, it is recomended to avoid N application during the rainy season.


2006 ◽  
Vol 16 (3) ◽  
pp. 389-393 ◽  
Author(s):  
Larry Parsons ◽  
Brian Boman

Best management practices (BMPs) started in Florida citrus (Citrus spp.) in the 1990s and have evolved to play a major role in production practices today. One of the earliest BMPs in Florida arose from concerns over nitrate-nitrogen concentrations in some surficial groundwater aquifers exceeding the 10 mg·L-1 drinking water standard. This occurred in an area of well-drained sandy soils known as the Central Florida Ridge that extends north and south through the central part of the Florida peninsula. State agencies could have used a strictly regulatory approach and restricted how much nitrogen growers could apply. Instead of setting arbitrary regulations, the agencies promoted a scientific-based BMP approach. A nitrogen BMP for Central Florida Ridge citrus was established, and research is now validating the earlier groundwater work on more grower field sites. The purpose of this BMP was to minimize the risk of leaching nitrates from fertilizer into the groundwater. Several important aspects of the BMP involve: 1) limiting the amount of nitrogen fertilizer applied at any one time, 2) increasing the frequency of fertilizer applications, 3) reducing fertilizer applications during the summer rainy season, and 4) managing irrigation to reduce leaching below the root zone. Since this Central Florida Ridge nitrogen BMP was established, major BMP actions to improve water quality and reduce the quantity of runoff water have taken place in the Indian River production area of Florida's east coast. BMPs continue to be set up in other parts of the state for a variety of plant and animal agricultural practices. In some cases, cost-share funds have been provided to help implement BMPs. With voluntary BMPs, growers have scientifically based guidelines, a waiver of liability, and an avoidance of arbitrary regulations.


2010 ◽  
Vol 20 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Eric Simonne ◽  
Chad Hutchinson ◽  
Jim DeValerio ◽  
Robert Hochmuth ◽  
Danielle Treadwell ◽  
...  

The success of the best management practices (BMPs) program for vegetables in Florida is measured by the level of BMP implementation and the improvement of water quality. Both require keeping water and fertilizer in the root zone of vegetables. The University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Extension Vegetable Group has identified the fundamental principles of 1) basing UF/IFAS production recommendations on the rigors of science and the reality of field production; 2) replacing the out-of-date paradigm “pollute less by reducing nutrient application rates” with “improve water management and adjust fertilizer programs accordingly”; 3) engaging growers, consultants, educators, and regulators in open-channel discussions; and 4) regularly updating current fertilization and irrigation recommendations for vegetables grown in Florida to reflect current varieties used by the industry. The group identified 1) developing ultralow-flow drip irrigation; 2) assisting conversion from seepage to drip irrigation; 3) using recycled water; 4) developing controlled-release fertilizers for vegetables; 5) developing real-time management tools for continuous monitoring of soil water and chemical parameters; 6) developing yield mapping tools for vegetable crops; 7) developing and testing drainage lysimeter designs suitable for in-field load assessment; and 8) using grafting and breeding to develop commercially acceptable varieties with improved nutrient use efficiency by improving morphological, biochemical, and chemical traits as new strategies to keep nutrients in the root zone. These strategies should become funding priorities for state agencies to help the vegetable industry successfully transition into the BMP era.


EDIS ◽  
2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Brian J. Boman ◽  
Thomas A. Obreza ◽  
Kelly T. Morgan

The information provided in the 2008 2nd edition is still sound for healthy citrus trees under Florida production conditions. Much of the information provided in this document on nutrients, application methods, leaf and soil sampling and irrigation scheduling are also effective for huanglongbing (HLB) affected citrus trees. However, research conducted since HLB was detected in Florida in 2005 has established changes in many production practices, including nutrient rates, irrigation scheduling, soil pH management, and use of Citrus Under Protective Screen (CUPS). Changes to the 2nd edition of SL253 will appear in boxes similar to this one at the beginnings of chapters 2, 6, 8, 9, and 11.


EDIS ◽  
1969 ◽  
Vol 2004 (2) ◽  
Author(s):  
Tom Obreza ◽  
Bob Rouse

In the new age of Florida citrus production, Best Management Practices to protect water quality are being considered across the state. Growers have been encouraged to carefully consider nitrogen (N) fertilizer rates, application schedules, and irrigation management in their groves. Nitrogen sources have received little attention because most managers are accustomed to using water-soluble fertilizers like ammonium nitrate, ammonium sulfate, and urea. Synthetic controlled-release fertilizers (CRFs) have existed commercially for more than 35 years, but other than use in young-tree fertilizer blends, Florida citrus growers have avoided them due to high cost and lack of production experience. This document is SL-214, a fact sheet of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: January 2004. https://edis.ifas.ufl.edu/ss433


2006 ◽  
Vol 16 (3) ◽  
pp. 408-412 ◽  
Author(s):  
Nicolas Tremblay ◽  
Carl Bélec

Weather is the primary driver of both plant growth and soil conditions. As a consequence of unpredictable weather effects on crop requirements, more inputs are being applied as an insurance policy. Best management practices (BMPs) are therefore about using minimal input for maximal return in a context of unpredictable weather events. This paper proposes a set of complementary actions and tools as BMP for nitrogen (N) fertilization of vegetable crops: 1) planning from an N budget, 2) reference plot establishment, and 3) crop sensing prior to in-season N application based on a saturation index related to N requirement.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1349
Author(s):  
John Havlin ◽  
Ron Heiniger

Increasing crop productivity per unit of land area to meet future food and fiber demand increases both soil nutrient removal and the importance of replenishing soil fertility through efficient nutrient management practices. Significant progress in enhancing nutrient-use efficiency in production agriculture requires improved estimates of plant-available nutrients in the root zone, enhanced crop response to applied nutrients, and reduced offsite nutrient transport. This special issue, Soil Fertility Management for Better Crop Production, presents 15 manuscripts that advance our knowledge of interrelated soil, plant, and management factors important to increasing the nutrient availability and crop recovery of applied nutrients.


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 276 ◽  
Author(s):  
Giacomo Betti ◽  
Cameron D. Grant ◽  
Robert S. Murray ◽  
G. Jock Churchman

Clay delving in strongly texture-contrast soils brings up subsoil clay in clumps ranging from large clods to tiny aggregates depending on the equipment used and the extent of secondary cultivation. Clay delving usually increases crop yields but not universally; this has generated questions about best management practices. It was postulated that the size distribution of the subsoil clumps created by delving might influence soil-water availability (and hence crop yield) because, although the clay increases water retention in the root-zone, it can also cause poor soil aeration, high soil strength and greatly reduced hydraulic conductivity. We prepared laboratory mixtures of sand and clay-rich subsoil in amounts considered practical (10% and 20% by weight) and excessive (40% and 60% by weight) with different subsoil clod sizes (<2, 6, 20 and 45 mm), for which we measured water retention, soil resistance, and saturated hydraulic conductivity. We calculated soil water availability by traditional means (plant-available water, PAW) and by the integral water capacity (IWC). We found that PAW increased with subsoil clay, particularly when smaller aggregates were used (≤6 mm). However, when the potential restrictions on PAW were taken into account, the benefits of adding clay reached a peak at ~40%, beyond which IWC declined towards that of pure subsoil clay. Furthermore, the smaller the aggregates the less effective they were at increasing IWC, particularly in the practical range of application rates (<20% by weight). We conclude that excessive post-delving cultivation may not be warranted and may explain some of the variability found in crop yields after delving.


Sign in / Sign up

Export Citation Format

Share Document