container nursery
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 3)

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1011
Author(s):  
Piotr Robakowski ◽  
Tomasz P. Wyka ◽  
Wojciech Kowalkowski ◽  
Władysław Barzdajn ◽  
Emilia Pers-Kamczyc ◽  
...  

Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth responses of seedlings of four economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica L., Quercus petraea (Matt.) Liebl., and evergreen conifers Abies alba Mill. and Pinus sylvestris L. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation, and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues, and smaller conduit diameters. These responses did not occur in conifers. Relative transcript abundance of a gene encoding the Zn-finger protein in Q. petraea and a gene encoding the pore calcium channel protein 1 in A. alba increased as water deficit increased. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.


Author(s):  
Piotr Robakowski ◽  
Tomasz Wyka ◽  
Kowalkowski Wojciech ◽  
Władysław Barzdajn ◽  
Emilia Pers-Kamczyc ◽  
...  

Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth response of seedlings of economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica, Quercus petraea and evergreen conifers Abies alba and Pinus sylvestris. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues and smaller conduit diameters, but not conifers. Relative transcript abundance of a gene encoding a Zn-finger protein in Q. petraea and a gene encoding a pore calcium channel protein 1 in A. alba increased as water deficit increased. These findings suggest that in container nursery, the genetic selection can be initiated by water deficit. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.


2019 ◽  
Vol 29 (6) ◽  
pp. 730-735 ◽  
Author(s):  
Damon E. Abdi ◽  
R. Thomas Fernandez

Ornamental nurseries produce a large number of plants in a concentrated area, and aesthetics are a key component of the product. To produce crops in this manner, high inputs of water, nutrients, and pesticides are typically used. Container nursery production further increases the inputs, especially water, because container substrates are designed to quickly drain, and the most effective method of irrigating large numbers of plants in containers (up to a certain size) is the use of overhead irrigation. Because irrigation and pesticides are broadcast over the crop, and because the crop is limited to the container, a large proportion of water or pesticides may land on nontarget areas, creating runoff contaminant issues. Water is the primary means of pesticide movement in nursery production. This review discusses water and pesticide dynamics and management strategies to conserve water and reduce pesticide and water movement during container nursery production.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 807
Author(s):  
Shi-Jean S. Sung ◽  
R. Kasten Dumroese ◽  
Jeremiah R. Pinto ◽  
Mary Anne S. Sayer

In recent decades, container stock has become the preferred plant material to regenerate longleaf pine (Pinus palustris Mill.) forests in the southeastern United States. We evaluated the effects of container nursery treatments on early and long-term field performance in central Louisiana. Seedlings were grown in four cavity volumes (60–336 mL) with or without copper oxychloride root pruning (Cu or no-Cu) and fertilized at three nitrogen (N) rates. Across treatments, 91% of the seedlings emerged from the grass stage by the second field season, and 88% of the seedlings survived eight years after outplanting (Year 8). Seedlings grown in the largest cavities had greater total heights and stem diameters than those cultured in the 60- and 95-mL cavities through Year 8. Seedlings receiving the least amount of N in the nursery were consistently smaller in stature through Year 8 than seedlings receiving more N. Field growth was unaffected by copper root pruning through Year 8. Foliar mineral nutrient concentrations and seedling nutrient contents of Year 2 seedlings did not respond to nursery treatments. Independent of nursery treatments, seedlings excavated in Year 2 had at least 60% of their first-order lateral roots (FOLRs) originating from the top 4.0 cm of the taproots. The Cu-root-pruned seedlings had twofold the percentage of FOLRs egressed from the top 8.0 cm of the root plug when compared with the no-Cu seedlings. Moreover, the Cu root pruning treatment decreased the percentage of root plug biomass allocated to FOLRs, total within root plug FOLR lengths, and FOLR deformity index. The effects of increasing cavity volume or N rate on the root plug FOLR variables were opposite those of the Cu root pruning treatment. Our results suggest that a tradeoff may exist between seedling stature and a more natural FOLR morphology in outplanted container longleaf pine seedlings.


2019 ◽  
Vol 667 ◽  
pp. 166-178 ◽  
Author(s):  
Mohammad Nayeb Yazdi ◽  
David J. Sample ◽  
Durelle Scott ◽  
James S. Owen ◽  
Mehdi Ketabchy ◽  
...  

2019 ◽  
Vol 213 ◽  
pp. 49-61 ◽  
Author(s):  
Luca Incrocci ◽  
Paolo Marzialetti ◽  
Giorgio Incrocci ◽  
Andrea Di Vita ◽  
Jos Balendonck ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Neelam R. Redekar ◽  
Joyce L. Eberhart ◽  
Jennifer L. Parke

Recycling of irrigation water increases disease risks due to spread of waterborne oomycete plant pathogens such as Phytophthora, Pythium, and Phytopythium. A comprehensive metabarcoding study was conducted to determine spatial and temporal dynamics of oomycete communities present in irrigation water collected from a creek (main water source), a pond, retention reservoirs, a chlorinated water reservoir, and runoff channels within a commercial container nursery in Oregon over the course of 1 year. Two methods, filtration and leaf baiting, were compared for the detection of oomycete communities. Oomycete communities in recycled irrigation water were less diverse but highly enriched with biologically active plant pathogens as compared with the creek water. The filtration method captured a larger portion of oomycete diversity, while leaf baiting was more selective for plant-associated oomycete species of Phytophthora and a few Pythium and Phytopythium species. Seasonality strongly influenced oomycete diversity in irrigation water and detection with leaf baiting. Phytophthora was the major colonizer of leaf baits in winter, while all three genera were equally abundant on leaf baits in summer. The metabarcoding approach was highly effective in studying oomycete ecology, however, it failed to distinguish some closely related species. We developed a custom oomycete internal transcribed spacer (ITS)1 reference database containing shorter sequences flanked by ITS6 and ITS7 primers used in metabarcoding and used it to assemble a list of indistinguishable species complexes and clusters to improve identification. The predominant bait-colonizing species detected in recycled irrigation water were the Phytophthora citricola-complex, Phytophthora syringae, Phytophthora parsiana-cluster, Phytophthora chlamydospora, Phytophthora gonapodyides, Phytophthora irrigata, Phytophthora taxon Oaksoil-cluster, Phytophthora citrophthora-cluster, Phytophthora megasperma-cluster, Pythium chondricola-complex, Pythium dissotocum-cluster, and Phytopythium litorale.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Sang-Jae Won ◽  
Vantha Choub ◽  
Jun-Hyeok Kwon ◽  
Dong-Hyun Kim ◽  
Young-Sang Ahn

This study investigated the control of Fusarium root rot and development of coastal pine (Pinus thunbergii) seedlings in a container nursery by using Bacillus licheniformis MH48. High-quality seedlings without infectious diseases cause vigorous growth. Fusarium root rot caused by Fusarium oxysporum is responsible for serious damage to coastal pine seedlings in nurseries. B. licheniformis MH48 produced enzymes that degraded the fungal cell walls, such as chitinase and β-1,3-glucanase. These lytic enzymes exhibited destructive activity toward F. oxysporum hyphae, which were found to play key roles in the suppression of root rot. In addition, B. licheniformis MH48 increased the nitrogen and phosphorus in soils via fixed atmospheric nitrogen and solubilized inorganic phosphate. B. licheniformis MH48 produced the phytohormone auxin, which stimulated seedling root development, resulting in increased nutrient uptake in seedlings. Both the bacterial inoculation and the chemical fertilizer treatments significantly increased seedling growth and biomass, and the bacterial inoculation had a greater effect on seedling development. Based on the results from this study, B. licheniformis MH48 showed potential as a biological agent against Fusarium root rot and as a promoter of growth and development of Pinus thunbergii seedlings.


Sign in / Sign up

Export Citation Format

Share Document