scholarly journals Experiences with Conservation Tillage Vegetables in Tennessee

1999 ◽  
Vol 9 (3) ◽  
pp. 366-372 ◽  
Author(s):  
Alvin D. Rutledge

Research yields of conservation tillage (CT) snap beans (Phaseolus vulgaris L.) and sweet corn (Zea mays L. var. rugosa Bonaf.) have been less than those produced under conventional tillage. This has been due to soil conditions at planting, the cover crop used, weed control and a lack of proper design in equipment for CT. However, some growers have been successful with CT for sweet corn using hairy vetch (Vicia villosa Roth.) as the cover crop. On-farm demonstrations of CT with cabbage (Brassica oleracea L. Capitata Group), pumpkins (Cucurbita pepo L.), tomatoes (Lycopersicon esculentum Mill.) and watermelons [Citrullus lanatus (Thunb) Matsum. & Nak.] have been successful and with good management it is commercially feasible under Tennessee conditions. Advantages include reduced soil erosion, cleaner products, more efficient application of crop protection chemicals, quicker planting after rainfall, lower energy costs and facilitation of harvest in wet weather. Disadvantages include reduced weed control, modifications of existing equipment, less uniformity in seed coverage and problems with transplanting, cover crop residue in mechanically harvested crops, possible delays in early harvest of fresh market crops due to delayed maturity and limited application of soil protective chemicals.

2018 ◽  
Vol 32 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Andrew J. Price ◽  
Jacob P. Williams ◽  
Leah A. Duzy ◽  
J. Scott McElroy ◽  
Elizabeth A. Guertal ◽  
...  

AbstractA 3-yr watermelon experiment was established in fall 2013 to evaluate cover crop, polyethylene mulch, tillage, and herbicide application components for weed control, yield, and profitability. Conservation tillage, either with a cereal rye cover crop alone or integrated with polyethylene mulch, was compared to the standard industry practice of conventional tillage with bedded polyethylene mulch. The study also used a non-bedded conventional tillage system without polyethylene to determine polyethylene and cover crop residue effects. Within each of the four systems, herbicide treatments comprised halosulfuron applied (1) at 26.3 g ai ha–1PRE, (2) at 26.3 g ai ha–1POST, or (3) sequentially at 26.3 g ai ha–1PRE and POST. Each system also had a nontreated control. In addition, clethodim was applied in all plots twice POST at 140 g ai ha–1, except for nontreated in each system. In 2014, polyethylene or cereal rye cover crop effectively controlled tall morningglory, coffee senna, and carpetweed early season in nontreated plots, whereas the integration of the two was effective at controlling common purslane. Tall morningglory and purslane control was insufficient late season regardless of production system and herbicide application. In 2015, polyethylene effectively controlled cutleaf eveningprimrose, sicklepod, and arrowleaf sida early season in nontreated plots. Yellow nutsedge control was insufficient late season regardless of production system and herbicide application. Utilizing sequential halosulfuron applications did not increase weed control over PRE or POST alone in all years. Polyethylene use resulted in yields higher than systems without in all years. Across all 3 yr, net returns were highest for polyethylene mulch systems. The results of this experiment underscore the need for more progress in developing integrated conservation systems for watermelon production. Effective herbicides, low-disturbance cultivation, and/or hand weeding are most likely the key to success in conservation specialty crop systems.


2018 ◽  
Vol 32 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Andrew J. Price ◽  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Steve Li

AbstractCover crops are being increasingly recommended as an integrated approach to controlling glyphosate-resistant Palmer amaranth and other troublesome weeds. Thus, a field experiment was conducted in 2010 through 2012 to evaluate the critical period for weed control (CPWC) in cotton as affected by a cereal rye cover crop and tillage. The management systems evaluated included conventional tillage following winter fallow, conservation tillage (CT) following winter fallow, and CT following a cereal rye cover crop managed for maximum biomass. Throughout most of the growing season, weed biomass in cereal rye cover crop plots was less than the CT winter-fallow system in both years and less than both CT winter fallow and conventional tillage in 2012. The CPWC was shortest in 2010 following conventional tillage; however, in 2012, production system influences on CPWC were less. The presence of the rye cover crop delayed the critical timing for weed removal (CTWR) approximately 8 d compared with fallow treatment both years, while conventional tillage delayed CTWR about 2 wk compared with winter fallow. Relative yield losses in both years did not reach the 5% threshold limit until about 2 wk after planting (WAP) for CT following winter fallow, 3 WAP for CT following a cover crop, and 3.5 WAP following conventional tillage. Thus, CT following winter fallow should be avoided to minimize cotton yield loss.


2012 ◽  
Vol 63 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Cezary Kwiatkowski

A field experiment involving the cultivation of common valerian was conducted on loess soil in Abramów (Lublin region) in the period 2007-2009. Qualitative parameters of herbal raw material obtained from this plant as well as in-crop weed infestation were evaluated depending on the protection method and forecrop. Hand-weeded plots, in which a hand hoe was used, were the control. In the other treatments, weeds were controlled using various herbicides and a mechanical implement (brush weeder). Potato and winter wheat + field pea cover crop were the forecrops for common valerian crops. A hypothesis was made that the use of a brush weeder and herbicides not registered for application in valerian crops would have a positive effect on this plant's productivity and weed infestation in its crops. It was also assumed that the introduction of a cover crop would allow the elimination of differences in the forecrop value of the crop stands in question. The best quantitative and qualitative parameters of common valerian raw material as well as the largest reduction of incrop weed infestation were recorded after the application of the herbicides which were not type approved. The use of the brush weeder in the interrows also had a beneficial effect on productivity of the plant in question, but secondary weed infestation at the end of the growing season of common valerian turned out to be its disadvantage. Traditional crop protection methods used in common valerian crops were less effective in weed infestation reduction and they resulted in lower plant productivity and raw material quality. Potato proved to be a better forecrop for common valerian than winter wheat + field pea; however, this positive effect was not confirmed statistically. The following annual weeds: <i>Chenopodium album</i>, <i>Galinsoga parviflora</i>, <i>Stellaria media</i>, were predominant in the common valerian crop. Traditional weed control methods resulted in the dominance of some dicotyledonous weeds, such as <i>Viola arvensis</i>, <i>Galium aparine</i>, <i>Capsella bursa-pastoris</i>.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


1993 ◽  
Vol 7 (4) ◽  
pp. 879-883 ◽  
Author(s):  
John R. Teasdale

Weed management treatments with various degrees of herbicide inputs were applied with or without a hairy vetch cover crop to no-tillage corn in four field experiments at Beltsville, MD. A hairy vetch living mulch in the no-treatment control or a dead mulch in the mowed treatment improved weed control during the first 6 wk of the season but weed control deteriorated in these treatments thereafter. Competition from weeds and/or uncontrolled vetch in these treatments without herbicides reduced corn yield in three of four years by an average of 46% compared with a standard PRE herbicide treatment of 0.6 kg ai/ha of paraquat plus 1.1 kg ai/ha of atrazine plus 2.2 kg ai/ha of metolachlor. Reducing atrazine and metolachlor to one-fourth the rate of the standard treatment in the absence of cover crop reduced weed control in three of four years and corn yield in two of four years compared with the standard treatment. Hairy vetch had little influence on weed control or corn yield with any herbicide treatments.


2005 ◽  
Vol 53 (1) ◽  
pp. 53-57 ◽  
Author(s):  
T. Rátonyi ◽  
L. Huzsvai ◽  
J. Nagy ◽  
A. Megyes

The cultivation technologies for the dominant crops in Hungary need to be improved both in the interests of environmental protection and to reduce cultivation costs. A long-term research project was initiated in order to determine the feasibility of conservation tillage systems. The aim of the experiments was to evaluate conservation farming systems in Hungary in order to achieve more economical and more environment-friendly agricultural land use. Four tillage systems, namely conventional tillage (mouldboard plough), conservation tillage I (primary tillage with a J.D. Disk Ripper), conservation tillage II (primary tillage with a J.D. Mulch Finisher) and no tillage (direct drilling), were compared on a clay loam meadow soil (Vertisol). The physical condition of the experimental soils was evaluated using a hand-operated static cone penetrometer. Parallel with the measurement of penetration resistance, the moisture content of the soil was also determined. The grain yield of maize hybrids (Kincs SC [1999], Occitán SC [2000], Pr 37M34 SC [2001], DeKalb 471 SC [2002]) was measured using a plot combine-harvester. The analysis of soil conditions confirmed that if the cultivation depth and intensity are reduced the compaction of soil layers close to the surface can be expected. The decrease in yields (8-33%) in direct drilling (NT) and shallow, spring cultivated (MF) treatments, despite the higher available water content, can be explained partly by the compacted status of the 15-25 cm soil layer.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1161f-1161
Author(s):  
Francis X. Mangan ◽  
Stephen J. Herbert

Field research was conducted in Deerfield, Mass. to study the effects of leguminous cover crops on sweet corn yield. Oat was planted alone and in combination with four leguminous cover crops August 8, 1990. Cover crop residue was disked once and sweet corn seeded April 23, 1991. Each cover crop combination had three rates of nitrogen added in two applications. Sweet corn seeded into stands of hairy vetch (Vicia villosa) yielded the highest of the cover crop combinations. All leguminous cover crop treatments yielded higher than oat alone or no cover crop when no synthetic nitrogen was added. Cover crop combinations were seeded again in the same field plots August 12, 1991. Oat biomass in November was greater where there had been leguminous cover crops or high rates of synthetic nitrogen. Legume growth was retarded in the plots that had previously received high nitrogen. It is thought that legume growth was reduced in the high nitrogen treatments due to increased oat growth and higher soil nitrogen levels which could inhibit root nodulation.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 461E-461
Author(s):  
H.J. Hruska ◽  
G.R. Cline ◽  
A.F. Silvernail ◽  
K. Kaul

Research began in 1999 to examine sustainable production of bell peppers (Capsicum annuum L.) using conservation tillage and legume winter cover crops. Tillage treatments included conventional tillage, strip-tillage, and no-tillage, and winter covers consisted of hairy vetch (Vicia villosa Roth), winter rye (Secale cereale L.), and a vetch/rye biculture. Pepper yields following the rye winter cover crop were significantly reduced if inorganic N fertilizer was not supplied. However, following vetch, yields of peppers receiving no additional N were similar to yields obtained in treatments receiving the recommended rate of inorganic N fertilizer. Thus, vetch supplied sufficient N to peppers in terms of yields. Pepper yields following the biculture cover crop were intermediate between those obtained following vetch and rye. When weeds were controlled manually, pepper yields following biculture cover crops were similar among the three tillage treatments, indicating that no-tillage and strip-tillage could be used successfully if weeds were controlled. With no-tillage, yields were reduced without weed control but the reduction was less if twice the amount of residual cover crop surface mulch was used. Without manual weed control, pepper yields obtained using strip-tillage were reduced regardless of metolachlor herbicide application. It was concluded that a vetch winter cover crop could satisfy N requirements of peppers and that effective chemical or mechanical weed control methods need to be developed in order to grow peppers successfully using no-tillage or strip-tillage.


HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1163-1166 ◽  
Author(s):  
John R. Teasdale ◽  
Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).


Sign in / Sign up

Export Citation Format

Share Document