scholarly journals Early-season Production of Grafted Seedless Cucumbers in High Tunnels

2018 ◽  
Vol 28 (1) ◽  
pp. 74-79
Author(s):  
Wenjing Guan ◽  
Daniel S. Egel ◽  
Larry D. Sutterer ◽  
Alexander D. Plummer

Seedless cucumber (Cucumis sativus) is a popular and high-value crop found in many local food markets. Worldwide, it is the third most important high tunnel crop after tomato (Solanum lycopersicum) and pepper (Capsicum annuum). One challenge of growing seedless cucumbers in high tunnels is low soil temperatures in the early season that suppress plant growth even when air temperatures would be adequate. Grafting cucumbers to enhance crop tolerance to suboptimal temperature stresses has been widely used in Asian countries. However, little information is available in the United States about graft compatibility, cold hardiness, and seasonal extension potential of growing grafted seedless cucumbers in high tunnels. In this study, we tested the effects of grafting with two winter squash (Cucurbita moschata) rootstocks (‘Titan’ and ‘Marvel’) on vegetative growth and yield of three seedless cucumbers (‘Excelsior’ pickling cucumber, ‘Socrates’ Beit Alpha cucumber, and ‘Taurus’ long-type cucumber) in the spring seasons of 2016 and 2017 in high tunnels located in U.S. Department of Agriculture (USDA) hardiness zone 6. Nongrafted plants were included as controls. All grafted plants survived the suboptimal temperature stress during transplant period, whereas 59% of nongrafted plants died in the 2016 season. Irrespective of rootstock and cucumber cultivar, vine growth rates of nongrafted cucumbers in April of both years were lower than those of the grafted crops. Cucumber cultivars Excelsior and Taurus grafted onto Marvel winter squash rootstock had higher yields in May 2016 compared with the yields of the nongrafted plants in the same month. The enhanced early-season yields of grafted plants were observed on cucumber cultivars Excelsior and Socrates in 2017 regardless of rootstocks. Grafting also increased the entire season’s yields of the three cucumber cultivars in 2017, but not in 2016. More comprehensive evaluations about cold tolerances of newly released cucumber rootstocks are needed. Further studies are also warranted to improve our understanding of effects of rootstock and scion interactions on cucumber growth and yield in high tunnel production.

HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 914-919
Author(s):  
Wenjing Guan ◽  
Dean Haseman ◽  
Dennis Nowaskie

Grafting technology is increasingly being accepted in the United States, particularly for tomato (Solanum lycopersicum) production under protected structures. There is a great potential to expand this technology to other high tunnel crops. Using grafting technology in cucumber (Cucumis sativus) production is widely adopted in Asia to enhance cucumbers’ tolerance to low temperatures. But this technique is rarely used in the United States mainly because of the lack of information on the performance of the grafted plants under local production systems. Figleaf gourd (Cucurbita ficifolia), Cucurbita moschata, and squash interspecific hybrid (Cucurbita maxima × C. moschata) are the most used cucumber rootstocks worldwide. But their comparative performance was largely unknown for cucumber production in high tunnels in the Midwest United States. This study was therefore designed to compare the major types of cucumber rootstocks with the goal of identifying a rootstock with the maximized benefits for high tunnel cucumber production in the area. Nongrafted ‘Socrates’ and ‘Socrates’ grafted with Cucurbita moschata, squash interspecific hybrid, and figleaf gourd rootstocks were evaluated in high tunnels from March to June or July in 2016–19 at the Southwest Purdue Agricultural Center in Vincennes, IN. Transplant establishment, vine growth, and yield in early- and main-crop seasons were investigated. Grafted plants regardless of rootstocks ensured transplant survival even when the soil temperatures were dropped below 10 °C. Suboptimal soil conditions were encountered in the first month after transplanting. Grafted cucumbers with squash interspecific hybrid rootstock significantly increased vine growth from March to April and increased early-season yields (yield before 15 May) by 1.8 to 18.2 times compared with the early-season yields of the nongrafted cucumbers. The benefits provided by using grafting technology dismissed around middle May. Only squash interspecific hybrid rootstock improved cucumber yields in the entire production seasons. Cucumbers grafted with figleaf gourd rootstock had the lowest yield and the least plant growth after mid-May, indicating figleaf gourd rootstock may not be suitable for cucumber production under the current production system. Overall, squash interspecific hybrid was the most promising rootstock for early-season high tunnel cucumber production in the Midwest United States.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 625
Author(s):  
Savanah Laur ◽  
Andre Luiz Biscaia Ribeiro da Silva ◽  
Juan Carlos Díaz-Pérez ◽  
Timothy Coolong

This study evaluated the impact of shade cloth and fogging systems on the microclimate at the plant canopy level and yield of basil (Oscimum basilicum L.), arugula (Eruca vesicaria subsp. Sativa L.), and lettuce (Lactuca sativa L.) planted in mid-September and early October in high tunnels. Fogging systems were installed at canopy level in plots within shaded (30%) and non-shaded high tunnels. Average air temperatures in the shaded high tunnels were 0.9 °C lower than non-shaded high tunnels during the day. Shade cloth significantly reduced soil temperatures during the day and night periods by 1.5 °C and 1.3 °C, respectively, compared to non-shaded treatments. Fogging systems did not have an impact on air temperature, soil temperature, or relative humidity, but did increase canopy leaf wetness. Shade and fogging did not impact the yield of any of the crops grown. Yield was impacted by planting date, with earlier planting result in higher yields of lettuce and basil. Yields for arugula were greater during the second planting date than the first. Planting date and shade cloth interacted to affect the concentrations of macronutrients.


2010 ◽  
Vol 20 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Edward E. Carey ◽  
M.B. Kirkham

A survey was conducted of 81 growers managing 185 high tunnels in Missouri, Kansas, Nebraska, and Iowa to collect information about their high tunnel management practices. The survey was administered from 2005 to 2007 using internet-based and written forms. The average respondent had 4 years of high tunnel experience. The oldest tunnel still in use was 15 years old. Twenty-five percent of respondents grew crops in their high tunnels year-round. Tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), cucumber (Cucumis sativus), pepper (Capsicum spp.), leafy greens, and flowers were the most common crops. Organic soil amendments were used exclusively by 35% of growers, and in combination with conventional fertilizers by an additional 50% of growers. The summary of management practices is of interest to growers and the industries and university research and extension scientists who serve them. Growers typically reported satisfaction with their high tunnels. Growers with more than one high tunnel had often added tunnels following the success of crop production in an initial tunnel. Labor for crop maintenance was the main limiting factor reported by growers as preventing expanded high tunnel production.


HortScience ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 1165-1170 ◽  
Author(s):  
Kristen Hanson ◽  
Tilak Mahato ◽  
Ursula K. Schuch

High tunnels are unheated structures covered with polyethylene (PE) glazing to protect high-value crops from adverse weather. The objective of this study was to raise soil temperatures to determine the efficacy of soil solarization using clear mulch on the soil surface and glazing or no glazing on a high tunnel during the hottest months of the year in the semiarid southwestern United States. Solarization trials were conducted in May and June 2013 in two high tunnels in southern Arizona. Highest soil temperatures were reached with the combination of a high tunnel covered with glazing and the soil covered with PE mulch. Average daily soil temperatures were 48 and 47 °C and average degree hours (DH) per day (base temperature 45 °C) were over 14 at soil depths of 5 and 15 cm. The average daily maximum soil temperature at 5- and 15-cm depth was 63.4 and 52 °C, respectively. The second highest soil temperatures were reached when the soil was covered with PE mulch without high tunnel glazing, which resulted per day in 5.2 DH above 45 °C at 5 cm and less than one DH at 15-cm depth. Glazing on the high tunnel without covering the soil surface raised soil temperatures only at the 5-cm depth above 45 °C, but not further down. High tunnel producers in the low desert areas in the southwestern United States can complete solarization in less than 1 week, depending on the organism to be controlled, when the soil is fallow during the summer months with glazing on the high tunnel and on the soil surface.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1534-1538 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Rhonda Janke ◽  
M.B. Kirkham ◽  
Kimberly A. Williams ◽  
Edward E. Carey

Growers have indicated that changes in soil quality under production in high tunnels is an important problem, but these have not yet been quantified or critically assessed in the central Great Plains of the United States. We conducted surveys of grower perceptions of soil quality in their tunnels (n = 81) and compared selected soil quality indicators (salinity and particulate organic matter carbon) under high tunnels of varying ages with those of adjacent fields at sites in Kansas, Missouri, Nebraska, and Iowa in the United States. Fourteen percent of growers surveyed considered soil quality to be a problem in their high tunnels, and there were significant correlations between grower perceptions of soil quality problems and reported observations of clod formation and surface crusting and to a lesser extent surface mineral deposition. Grower perception of soil quality and grower observation of soil characteristics were not related to high tunnel age. Soil surface salinity was elevated in some high tunnels compared with adjacent fields but was not related to time under the high tunnel. In the soil upper 5 cm, salinity in fields did not exceed 2 dS·m−1 and was less than 2 dS·m−1 under 74% of high tunnels and less than 4 dS·m−1 in 97% of high tunnels. The particulate organic matter carbon fraction was higher in high tunnels than adjacent fields at 73% of locations sampled. Particulate organic matter carbon measured 0.11 to 0.67 g particulate organic matter per g of the total carbon under high tunnels sampled. Particulate organic matter carbon in the soil was also not correlated to age of high tunnel. Soil quality as measured in this study was not negatively impacted by use of high tunnel structures over time.


HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 265-272
Author(s):  
Kelly M. Gude ◽  
Eleni D. Pliakoni ◽  
Brianna Cunningham ◽  
Kanwal Ayub ◽  
Qing Kang ◽  
...  

The implementation of high tunnels has shown to increase marketability and/or yield of tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) crops compared with open-field systems. These structures provide the opportunity to alter light intensity and spectral quality by using specific polyethylene (poly) films and/or shadecloth, which may affect microclimate and subsequent crop productivity. However, little is known about how specific high tunnel coverings affect these parameters. The overall goal of this study was to evaluate the impact of various high tunnel coverings on the microclimate and crop productivity of tomato and lettuce. The coverings included standard, ultraviolet (UV)-stabilized poly film (standard); diffuse poly (diffuse); full-spectrum clear poly (clear); UV-A/B blocking poly (block); standard + 55% shadecloth (shade); and removal of standard poly 2 weeks before initial harvest to simulate a movable tunnel (movable). Microclimate parameters that were observed included canopy and soil temperatures, canopy growing degree-days (GDD), and photosynthetic active radiation (PAR), and crop productivity included yield and net photosynthetic rate. Hybrid red ‘BHN 589’ tomatoes were grown during the summer, and red ‘New Red Fire’ and green ‘Two Star’ leaf lettuce were grown in both spring and fall in 2017 and 2018. Increased temperature, GDD, and PAR were observed during the spring and summer compared with the fall. The soil temperatures during the summer increased more under the clear covering compared with the others. For tomato, the shade produced lower total fruit yield and net photosynthetic rate (Pn) compared with the other treatments, which were similar (P < 0.001 and <0.001, respectively). The greatest yield was 7.39 kg/plant, which was produced under the clear covering. For red leaf lettuce grown in the spring, the plants under the clear, standard, and diffuse coverings had significantly greater yield than the movable and shade coverings (P < 0.001). The coverings had less effect on the yield during the fall lettuce trials, which may have been attributed to the decrease in PAR and environmental temperatures. The findings of this study suggest that high tunnel coverings affect both microclimate and yield of lettuce and tomato.


2009 ◽  
Vol 19 (1) ◽  
pp. 25-29 ◽  
Author(s):  
William J. Lamont

High tunnels have been used for many years worldwide, but in the United States, the utilization of high tunnel technology for the production of horticultural crops is a relatively recent phenomenon. Single and multibay high tunnels are used throughout the world to extend the production season. One big advantage of high tunnels in the temperate and tropical regions of the world is the exclusion of rain, thus reducing the amount of disease pressure and crop loss while improving crop quality and shelf life. In temperate regions of the world, high tunnels are used to increase temperatures for crop production in spring, fall, and sometimes winter seasons. The use of high tunnels in their many forms continues to increase worldwide, and many different kinds of vegetables, small fruit, tree fruit, and flowers are being cultivated. One impediment in determining high tunnel usage worldwide is the failure of many authors and agricultural census takers to distinguish between high tunnels and plastic-covered greenhouses. In many instances, they are presented together under the heading “protected cultivation.”


2021 ◽  
Vol 31 (2) ◽  
pp. 181-187
Author(s):  
Orlando F. Rodriguez Izaba ◽  
Wenjing Guan ◽  
Ariana P. Torres

Cucumber (Cucumis sativus) is one of the most important vegetables produced and consumed in the United States. In the midwestern United States, a major obstacle to spring cucumber production is low soil temperatures during plant establishment. High tunnel is a popular tool for season extension of vegetable production. Low soil temperature is a challenge for cucumber production even inside high tunnels. Grafting is a cultural practice known to help control soilborne diseases and improve plants’ tolerance to abiotic stresses. Recent studies found that using grafted cucumber plants with cold-tolerant rootstocks greatly benefited early-season seedless cucumber production in high tunnels. The objective of this study was to analyze the economic feasibility of growing grafted cucumber in high tunnels. A comparison of partial costs and returns between growing grafted and nongrafted cucumbers in a high tunnel in Vincennes, IN, was conducted. Data were used to develop a partial budget analysis and sensitivity tests. Data included production costs, marketable yield, and price of cucumber through different market channels. This study provided a baseline reference for growers interested in grafting seedless cucumber and for high tunnel production. Although costs of grafted transplants were higher, their yield and potential revenue helped to offset the higher costs. Results indicated that grafting can help farmers increase net returns through the increasing yield of grafted plants. Results from the sensitivity analysis illustrated how the increased yield of grafted cucumbers offsets the extra cost incurred in the technique while providing a higher revenue. While actual production costs for individual farmers may vary, our findings suggested that grafting can be an economically feasible tool for high tunnel seedless cucumber production.


2020 ◽  
Vol 30 (4) ◽  
pp. 492-503
Author(s):  
Craig J. Frey ◽  
Xin Zhao ◽  
Jeffrey K. Brecht ◽  
Dustin M. Huff ◽  
Zachary E. Black

Although grower interest in high tunnel tomato (Solanum lycopersicum) production has increased in recent years, systematic high tunnel research conducted in humid, subtropical regions has been limited. The potential of tomato grafting to mitigate biotic and abiotic stresses makes it complementary to high-value production systems in high tunnels. In this 2-year study, grafted vs. nongrafted organic tomato production in high tunnels and open fields was investigated to determine possible synergistic effects of these two technologies. In 2016, high tunnels resulted in a significant increase of total and marketable yields, by 43% and 87%, respectively, over open field production. Grafting also significantly increased total and marketable yields over nongrafted plants by 34% and 42%, respectively. Cultivar effects demonstrated greater benefits with the implementation of high tunnel and grafting technologies for ‘Tribute’ (a beefsteak-type tomato) than for ‘Garden Gem’ (a plum-type tomato), as the increase in marketable yield was 33% greater for ‘Tribute’ in high tunnels and 45% greater for ‘Tribute’ with grafting. In 2017, a delayed effective transplanting date and the lack of high tunnel summer season extension produced results that were generally cultivar specific. While grafting increased the total yield of both cultivars (by 18%), marketable yield was increased by grafting only for ‘Tribute’ in high tunnels (by 42%). Additionally, high tunnels improved marketable yield of ‘Tribute’ by 129% but had no effect on ‘Garden Gem’. This demonstrated the consistent trend of the beefsteak-type tomato benefiting more from the combination of high tunnel and grafting technologies than the plum-type tomato. High tunnels reduced fruit decay and cracking by up to 71% compared with open field production. Stink bug (Pentatomidae) damage had the greatest impact on marketable yields each season, reaching 13% and 34% of total yields in 2016 and 2017, respectively, and was unaffected by high tunnel production or grafting. This study revealed the benefits of integrating high tunnel and grafting technologies for enhancing organic production of fresh-market tomato in the humid subtropics, and demonstrated more research is warranted to establish regional planting dates and further optimize this high-value cropping system.


2019 ◽  
Vol 112 (4) ◽  
pp. 1765-1773 ◽  
Author(s):  
Laura L Ingwell ◽  
Ian Kaplan

Abstract As high tunnel vegetable production acreage increases in the United States, so does the need for management strategies tailored to their unique growing environment. Cucumbers are an ideal crop in these systems; they can be vertically trellised to maximize the production area and provide high yields to balance the increased costs associated with high tunnel construction. One of the most limiting factors in cucurbit production in general is the cucumber beetle complex and the bacterial pathogen they transmit. In this study, we investigated the optimal size of netting installed on high tunnels to prevent cucumber beetle colonization while maintaining ventilation to reduce heat stress. Of the three mesh sizes investigated across 4 yr, the intermediate mesh with a pore size of 0.72 × 0.97 mm was optimal to exclude cucumber beetles, maintain ventilation, and produce the highest yields for both cucumber and melon plants. The smallest (0.16 mm2) and intermediate mesh sizes resulted in secondary pest outbreaks (e.g., aphids), which did not occur in open tunnels and to a lesser extent in tunnels covered with the largest (1.00 × 4.00 mm) mesh. Despite these secondary pests, yield was higher in small- and intermediate-sized mesh treatments due to relief from cucumber beetle infestations, including striped (Acalymma vittatum Fabr. (Coleoptera: Chrysomelidae)) and spotted (Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae)) beetles. Overall, we conclude that insect exclusion netting is an effective method to exclude cucumber beetles from high tunnels, but mesh size should be carefully considered when weighing the collective effects on yield and primary/secondary pest abundance.


Sign in / Sign up

Export Citation Format

Share Document