Insect Exclusion Screens Reduce Cucumber Beetle Infestations in High Tunnels, Increasing Cucurbit Yield

2019 ◽  
Vol 112 (4) ◽  
pp. 1765-1773 ◽  
Author(s):  
Laura L Ingwell ◽  
Ian Kaplan

Abstract As high tunnel vegetable production acreage increases in the United States, so does the need for management strategies tailored to their unique growing environment. Cucumbers are an ideal crop in these systems; they can be vertically trellised to maximize the production area and provide high yields to balance the increased costs associated with high tunnel construction. One of the most limiting factors in cucurbit production in general is the cucumber beetle complex and the bacterial pathogen they transmit. In this study, we investigated the optimal size of netting installed on high tunnels to prevent cucumber beetle colonization while maintaining ventilation to reduce heat stress. Of the three mesh sizes investigated across 4 yr, the intermediate mesh with a pore size of 0.72 × 0.97 mm was optimal to exclude cucumber beetles, maintain ventilation, and produce the highest yields for both cucumber and melon plants. The smallest (0.16 mm2) and intermediate mesh sizes resulted in secondary pest outbreaks (e.g., aphids), which did not occur in open tunnels and to a lesser extent in tunnels covered with the largest (1.00 × 4.00 mm) mesh. Despite these secondary pests, yield was higher in small- and intermediate-sized mesh treatments due to relief from cucumber beetle infestations, including striped (Acalymma vittatum Fabr. (Coleoptera: Chrysomelidae)) and spotted (Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae)) beetles. Overall, we conclude that insect exclusion netting is an effective method to exclude cucumber beetles from high tunnels, but mesh size should be carefully considered when weighing the collective effects on yield and primary/secondary pest abundance.

2010 ◽  
Vol 20 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Edward E. Carey ◽  
M.B. Kirkham

A survey was conducted of 81 growers managing 185 high tunnels in Missouri, Kansas, Nebraska, and Iowa to collect information about their high tunnel management practices. The survey was administered from 2005 to 2007 using internet-based and written forms. The average respondent had 4 years of high tunnel experience. The oldest tunnel still in use was 15 years old. Twenty-five percent of respondents grew crops in their high tunnels year-round. Tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), cucumber (Cucumis sativus), pepper (Capsicum spp.), leafy greens, and flowers were the most common crops. Organic soil amendments were used exclusively by 35% of growers, and in combination with conventional fertilizers by an additional 50% of growers. The summary of management practices is of interest to growers and the industries and university research and extension scientists who serve them. Growers typically reported satisfaction with their high tunnels. Growers with more than one high tunnel had often added tunnels following the success of crop production in an initial tunnel. Labor for crop maintenance was the main limiting factor reported by growers as preventing expanded high tunnel production.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1534-1538 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Rhonda Janke ◽  
M.B. Kirkham ◽  
Kimberly A. Williams ◽  
Edward E. Carey

Growers have indicated that changes in soil quality under production in high tunnels is an important problem, but these have not yet been quantified or critically assessed in the central Great Plains of the United States. We conducted surveys of grower perceptions of soil quality in their tunnels (n = 81) and compared selected soil quality indicators (salinity and particulate organic matter carbon) under high tunnels of varying ages with those of adjacent fields at sites in Kansas, Missouri, Nebraska, and Iowa in the United States. Fourteen percent of growers surveyed considered soil quality to be a problem in their high tunnels, and there were significant correlations between grower perceptions of soil quality problems and reported observations of clod formation and surface crusting and to a lesser extent surface mineral deposition. Grower perception of soil quality and grower observation of soil characteristics were not related to high tunnel age. Soil surface salinity was elevated in some high tunnels compared with adjacent fields but was not related to time under the high tunnel. In the soil upper 5 cm, salinity in fields did not exceed 2 dS·m−1 and was less than 2 dS·m−1 under 74% of high tunnels and less than 4 dS·m−1 in 97% of high tunnels. The particulate organic matter carbon fraction was higher in high tunnels than adjacent fields at 73% of locations sampled. Particulate organic matter carbon measured 0.11 to 0.67 g particulate organic matter per g of the total carbon under high tunnels sampled. Particulate organic matter carbon in the soil was also not correlated to age of high tunnel. Soil quality as measured in this study was not negatively impacted by use of high tunnel structures over time.


2009 ◽  
Vol 19 (1) ◽  
pp. 25-29 ◽  
Author(s):  
William J. Lamont

High tunnels have been used for many years worldwide, but in the United States, the utilization of high tunnel technology for the production of horticultural crops is a relatively recent phenomenon. Single and multibay high tunnels are used throughout the world to extend the production season. One big advantage of high tunnels in the temperate and tropical regions of the world is the exclusion of rain, thus reducing the amount of disease pressure and crop loss while improving crop quality and shelf life. In temperate regions of the world, high tunnels are used to increase temperatures for crop production in spring, fall, and sometimes winter seasons. The use of high tunnels in their many forms continues to increase worldwide, and many different kinds of vegetables, small fruit, tree fruit, and flowers are being cultivated. One impediment in determining high tunnel usage worldwide is the failure of many authors and agricultural census takers to distinguish between high tunnels and plastic-covered greenhouses. In many instances, they are presented together under the heading “protected cultivation.”


2021 ◽  
Vol 31 (2) ◽  
pp. 181-187
Author(s):  
Orlando F. Rodriguez Izaba ◽  
Wenjing Guan ◽  
Ariana P. Torres

Cucumber (Cucumis sativus) is one of the most important vegetables produced and consumed in the United States. In the midwestern United States, a major obstacle to spring cucumber production is low soil temperatures during plant establishment. High tunnel is a popular tool for season extension of vegetable production. Low soil temperature is a challenge for cucumber production even inside high tunnels. Grafting is a cultural practice known to help control soilborne diseases and improve plants’ tolerance to abiotic stresses. Recent studies found that using grafted cucumber plants with cold-tolerant rootstocks greatly benefited early-season seedless cucumber production in high tunnels. The objective of this study was to analyze the economic feasibility of growing grafted cucumber in high tunnels. A comparison of partial costs and returns between growing grafted and nongrafted cucumbers in a high tunnel in Vincennes, IN, was conducted. Data were used to develop a partial budget analysis and sensitivity tests. Data included production costs, marketable yield, and price of cucumber through different market channels. This study provided a baseline reference for growers interested in grafting seedless cucumber and for high tunnel production. Although costs of grafted transplants were higher, their yield and potential revenue helped to offset the higher costs. Results indicated that grafting can help farmers increase net returns through the increasing yield of grafted plants. Results from the sensitivity analysis illustrated how the increased yield of grafted cucumbers offsets the extra cost incurred in the technique while providing a higher revenue. While actual production costs for individual farmers may vary, our findings suggested that grafting can be an economically feasible tool for high tunnel seedless cucumber production.


2022 ◽  
Author(s):  
Martha Sudermann ◽  
Lillian McGilp ◽  
Gregory Vogel ◽  
Melissa Regnier ◽  
Alejandraa Rodríguez Jaramillo ◽  
...  

High tunnels extend the growing season of high value crops, including tomatoes, but the environmental conditions within high tunnels favor the spread of the tomato leaf mold pathogen, Passalora fulva (syn. Cladosporium fulvum). Tomato leaf mold results in defoliation, and if severe, losses in yield. Despite substantial research, little is known regarding the genetic structure and diversity of populations of P. fulva associated with high tunnel tomato production in the United States. From 2016 to 2019, a total of 50 P. fulva isolates were collected from tomato leaf samples in high tunnels in the Northeast and Minnesota. Other Cladosporium species were also isolated from the leaf surfaces. Koch’s postulates were conducted to confirm that P. fulva was the cause of the disease symptoms observed. Race determination experiments revealed that the isolates belonged to either race 0 (six isolates) or race 2 (44 isolates). Polymorphisms were identified within four previously characterized effector genes Avr2, Avr4, Avr4e, and Avr9. The largest number of polymorphisms were observed for Avr2. Both mating type genes, MAT1-1-1 and MAT1-2-1, were present in the isolate collection. For further insights into the pathogen diversity, the 50 isolates were genotyped at 7,514 single-nucleotide polymorphism loci using genotyping-by-sequencing: differentiation by region but not by year was observed. Within the collection of 50 isolates, there were 18 distinct genotypes. Information regarding P. fulva population diversity will enable better management recommendations for growers, as high tunnel production of tomatoes expands.


1996 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Otho S. Wells

Rowcovers and high tunnels are two intensive production systems used by commercial growers to extend the season and to improve yields of vegetables and strawberries. There are many types of rowcovers. These materials are summarized with descriptive information, primary use, and cost. The basics of high tunnel construction are presented to facilitate setting up a high-tunnel system.


HortScience ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 46-54
Author(s):  
Craig J. Frey ◽  
Xin Zhao ◽  
Jeffrey K. Brecht ◽  
Dustin M. Huff ◽  
Zachary E. Black

The U.S. fresh-market tomato industry faces increasing competition from Mexico, which achieves greater productivity and quality due to the use of protected structures. Protected agriculture is limited in humid, subtropical regions of the United States. Although grower interest in high tunnel production has increased in recent years, systematic high tunnel research has not yet been conducted in subtropical Florida. Additionally, although tomato grafting has shown the potential to overcome biotic and abiotic stresses, research of high-tunnel, grafted tomato production in subtropical conditions is lacking. During this 2-year study (Citra, FL), a side-by-side comparison of open field and high tunnel organic tomato production was conducted using a split-split plot design. The most significant benefit of high tunnel production was season extension achieved through the reduction of foliar disease severity, which reduced the area under the disease progress curve by 64% across two seasons. This may be largely attributed to the pronounced reduction in the duration of leaf wetness during the wet months of the growing cycle. Grafting with ‘Multifort’ rootstock reduced the root-knot nematode soil population density by 88% as well as root galling severity, both of which demonstrated the potential for increased levels in the high tunnel production system compared with open field production. The more severe root-knot nematode infestation in high tunnels was likely due to the modification of soil temperatures, which were 2 °C greater during the early part of the season but were reduced after shadecloth application. Compared with the open field, solar radiation was reduced by 23% in the high tunnel before shadecloth application and by 51% after shadecloth application; however, due to the high radiation levels in subtropical Florida, daily light integral levels indicated that light was not limiting for high-quality tomato production. The average wind speed was reduced by 57% in the high tunnel and, together with the reduction in solar radiation, indicated the potential reduction in summer abiotic stress and evapotranspiration within high tunnels. These results revealed that the integrated use of high tunnel and grafting technologies may be important for enhancing fresh-market tomato production in the humid subtropics, especially in organic systems.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 914-919
Author(s):  
Wenjing Guan ◽  
Dean Haseman ◽  
Dennis Nowaskie

Grafting technology is increasingly being accepted in the United States, particularly for tomato (Solanum lycopersicum) production under protected structures. There is a great potential to expand this technology to other high tunnel crops. Using grafting technology in cucumber (Cucumis sativus) production is widely adopted in Asia to enhance cucumbers’ tolerance to low temperatures. But this technique is rarely used in the United States mainly because of the lack of information on the performance of the grafted plants under local production systems. Figleaf gourd (Cucurbita ficifolia), Cucurbita moschata, and squash interspecific hybrid (Cucurbita maxima × C. moschata) are the most used cucumber rootstocks worldwide. But their comparative performance was largely unknown for cucumber production in high tunnels in the Midwest United States. This study was therefore designed to compare the major types of cucumber rootstocks with the goal of identifying a rootstock with the maximized benefits for high tunnel cucumber production in the area. Nongrafted ‘Socrates’ and ‘Socrates’ grafted with Cucurbita moschata, squash interspecific hybrid, and figleaf gourd rootstocks were evaluated in high tunnels from March to June or July in 2016–19 at the Southwest Purdue Agricultural Center in Vincennes, IN. Transplant establishment, vine growth, and yield in early- and main-crop seasons were investigated. Grafted plants regardless of rootstocks ensured transplant survival even when the soil temperatures were dropped below 10 °C. Suboptimal soil conditions were encountered in the first month after transplanting. Grafted cucumbers with squash interspecific hybrid rootstock significantly increased vine growth from March to April and increased early-season yields (yield before 15 May) by 1.8 to 18.2 times compared with the early-season yields of the nongrafted cucumbers. The benefits provided by using grafting technology dismissed around middle May. Only squash interspecific hybrid rootstock improved cucumber yields in the entire production seasons. Cucumbers grafted with figleaf gourd rootstock had the lowest yield and the least plant growth after mid-May, indicating figleaf gourd rootstock may not be suitable for cucumber production under the current production system. Overall, squash interspecific hybrid was the most promising rootstock for early-season high tunnel cucumber production in the Midwest United States.


2012 ◽  
Vol 22 (4) ◽  
pp. 452-462 ◽  
Author(s):  
Mary A. Rogers ◽  
Annette L. Wszelaki

High tunnels are rapidly gaining favor from growers in many regions of the United States because these structures extend the growing season and increase quality of high-value horticultural crops. Small to midsized organic growers who sell tomatoes (Solanum lycopersicum) for the fresh market can benefit from lower disease pressure and higher marketable yields that can be achieved in high tunnels. High tunnels also protect crops from environmental damage and benefit production of heirloom tomatoes as these varieties often have softer fruit and are more susceptible to diseases and cracking and splitting than hybrid varieties. The objective of this study was to determine the impacts of high tunnel production and planting date on heirloom and hybrid tomato varieties by observing differences in plant growth, yield, marketability, and early blight (Alternaria solani) development within an organic production system. This study showed no increase in total yields in high tunnels as compared with the open field, but increased marketability and size of tomatoes, and lowered incidence of defoliation resulting from early blight. Tomato planted earlier in both high tunnels and the open field yielded more marketable fruit during the production season than plants established on later planting dates. Hybrid varieties yielded more marketable fruit than heirloom varieties; however, heirloom tomatoes can have equivalent market value because of greater consumer demand and premium prices attained in the local market.


2018 ◽  
Vol 28 (1) ◽  
pp. 74-79
Author(s):  
Wenjing Guan ◽  
Daniel S. Egel ◽  
Larry D. Sutterer ◽  
Alexander D. Plummer

Seedless cucumber (Cucumis sativus) is a popular and high-value crop found in many local food markets. Worldwide, it is the third most important high tunnel crop after tomato (Solanum lycopersicum) and pepper (Capsicum annuum). One challenge of growing seedless cucumbers in high tunnels is low soil temperatures in the early season that suppress plant growth even when air temperatures would be adequate. Grafting cucumbers to enhance crop tolerance to suboptimal temperature stresses has been widely used in Asian countries. However, little information is available in the United States about graft compatibility, cold hardiness, and seasonal extension potential of growing grafted seedless cucumbers in high tunnels. In this study, we tested the effects of grafting with two winter squash (Cucurbita moschata) rootstocks (‘Titan’ and ‘Marvel’) on vegetative growth and yield of three seedless cucumbers (‘Excelsior’ pickling cucumber, ‘Socrates’ Beit Alpha cucumber, and ‘Taurus’ long-type cucumber) in the spring seasons of 2016 and 2017 in high tunnels located in U.S. Department of Agriculture (USDA) hardiness zone 6. Nongrafted plants were included as controls. All grafted plants survived the suboptimal temperature stress during transplant period, whereas 59% of nongrafted plants died in the 2016 season. Irrespective of rootstock and cucumber cultivar, vine growth rates of nongrafted cucumbers in April of both years were lower than those of the grafted crops. Cucumber cultivars Excelsior and Taurus grafted onto Marvel winter squash rootstock had higher yields in May 2016 compared with the yields of the nongrafted plants in the same month. The enhanced early-season yields of grafted plants were observed on cucumber cultivars Excelsior and Socrates in 2017 regardless of rootstocks. Grafting also increased the entire season’s yields of the three cucumber cultivars in 2017, but not in 2016. More comprehensive evaluations about cold tolerances of newly released cucumber rootstocks are needed. Further studies are also warranted to improve our understanding of effects of rootstock and scion interactions on cucumber growth and yield in high tunnel production.


Sign in / Sign up

Export Citation Format

Share Document