scholarly journals A New Genotype for White Seed Coat Discovered in `Early Wax' Snap Bean

1991 ◽  
Vol 116 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Mark J. Bassett ◽  
Arie Blom

The white-seeded snap bean `Early Wax' (Phaseolus vulgaris L.) was crossed with a black-seeded breeding line 5-593. The F2 segregation data are consistent with a three-gene model, in which all three genes must be homozygous recessive to give white seed coat. One of the genes is t because of segregation in F2 for plants with white flowers and partial seed coat coloration. We hypothesize that the genes ers and ers2 in the presence of f block all seed color expression in all genes for partial coloration of seed. The hypothesis of three recessive genes was confirmed in a backcross test involving `Early Wax' x F1. The interaction of ers and ers2 was tested in progeny tests of partly colored BC-F1 plants. One of the erasure genes, ers2, blocks color expression in color zones close to the hilum, but only in the presence of ers. The other erasure gene, ers, blocks color expression only in color zones beyond those close to the hilum in a manner similar to the restr locus of Prakken (1972). The old hypothesis that partly colored seed phenotypes require the presence of a second factor e in addition to t, where the function of e is vague and unspecified, should be discarded for lack of supporting evidence, Under the new hypothesis, soldier series phenotypes (e.g., bipunctata, arcus, virgata, and virgarcus) may express in t ers Ers2 by action of ers or in t Ers Ers2 by action of various genes for partly colored seeds other than ers.

2003 ◽  
Vol 83 (3) ◽  
pp. 471-474 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
P. Hucl ◽  
A. Vandenberg

The availability of glabrous-hulled annual canarygrass (Phalaris canariensis L.) cultivars with yellow seed color may pave the way for developing this species into a food crop. The objective of this research was to study the inheritance of hull pubescence and seed color in annual canarygrass. A gametocide was applied to plants at Zadoks Growth Stage 42 to induce male sterility. CDC Maria, a glabrous-hulled and brown-seeded cultivar, was crossed with six pubescent-hulled, brownseeded annual canarygrass accessions and with CY193, a pubescent-hulled and yellow-seeded breeding line. In mono-hybrid crosses, segregation ratios of F2 populations were not significantly different from the phenotypic ratios of 3 pubescent-hulled: 1 glabrous-hulled for hull pubescence and 3 brown seeded: 1 yellow seeded for seed color. In the di-hybrid cross, a phenotypic ratio of 9 pubescent-hulled/brown seeded: 3 pubescent-hulled/yellow seeded: 3 glabrous-hulled/brown seeded: 1 glabrous-hulled/yellow seeded was observed. Glabrous-hulled and yellow seeded traits are each controlled by single recessive genes that segregate independently in annual canarygrass. Key words: Phalaris canariensis, canaryseed, inheritance, hull pubescence, seed color


2022 ◽  
Author(s):  
Brijesh Angira ◽  
Yang Zhang ◽  
Hong-Bin Zhang ◽  
Meiping Zhang ◽  
B.B. Singh ◽  
...  

Abstract Cowpea is an important food legume widely grown in the semi-arid tropics and serves as a main source of dietary protein, minerals, and vitamins. However, varieties differ from region to region based on the consumer’s preference for seed types determined by seed size, seed coat texture, seed color, and hilum-eye types. The genetics of seed size, seed color, and seed coat texture have been well documented, but the hilum-eye types have not been studied well because they represent seven different types with complex interactions. We studied the genetic segregation for hilum-eye types and determined the number of genes involved in a recombinant inbred line (RIL) population derived from a cross between a small eye parent ‘GEC’ and a Watson eye parent ‘IT98K-476-8’. The results demonstrated a three-gene model, W (Watson), S (small), and R (large), for cowpea seed hilum-eye type pattern and the interaction of these three genes, W, S, and R, resulted in five phenotypes, viz. self, Watson, small, large, and ring hilum-eye types. Moreover, we also mapped the RILs for hilum-eye types, identified three quantitative trait loci (QTLs), and aligned to the cowpea reference genome as QTL qHilum7.1, qHilum9.1, and qHilum10.1, corresponding to these three genes, Ring type (R), Watson type (W), and Small type (S) hilum-eye type patterns, respectively. Therefore, there was a complete agreement between the genetic analysis and QTL mapping for the number of genes controlling the hilum types in cowpea.


2016 ◽  
Vol 141 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Christina H. Hagerty ◽  
Alfonso Cuesta-Marcos ◽  
Perry Cregan ◽  
Qijian Song ◽  
Phil McClean ◽  
...  

Snap bean (Phaseolus vulgaris L.) breeding programs are tasked with developing cultivars that meet the standards of the vegetable processing industry and ultimately that of the consumer, all the while matching or exceeding the field performance of existing cultivars. While traditional breeding methods have had a long history of meeting these requirements, genetic marker technology, combined with the knowledge of important quantitative trait loci (QTL), can accelerate breeding efforts. In contrast to dry bean, snap bean immature pods and seeds are consumed as a vegetable. Several pod traits are important in snap bean including: reduced pod wall fiber, absence of pod suture strings, and thickened, succulent pod walls. In addition, snap bean pods are selected for round pod cross section, and pods tend to be longer with cylindrical seed shape. Seed color is an important trait in snap bean, especially those used for processing, as processors prefer white-seeded cultivars. The objective of this study was to investigate the genetic control of traits important to snap bean producers and processors. RR6950, a small seeded brown indeterminate type IIIA dry bean accession, was crossed to the Oregon State University (OSU) breeding line OSU5446, a type I Blue Lake four-sieve breeding line to produce the RR138 F4:6 recombinant inbred (RI) mapping population. We evaluated the RR138 RI population for processing and morphological traits, especially those affecting pods. The RR138 population was genotyped with the BARCBean6K_3 Beadchip, and single nucleotide polymorphisms (SNPs) were used to assemble a linkage map, and identify QTL for pod traits. The linkage map produced from this study contained 1689 SNPs across 1196cM. The map was populated with an average of one SNP per 1.4 cM, spanning 11 linkage groups. Seed and flower color genes B and P were located on Pv02 and Pv07, respectively. A QTL for string:pod length (PL) ratio was found on Pv02 controlling 32% of total genetic variation. QTL for a suite of important processing traits including pod wall fiber, pod height, pod width, and pod wall thickness were found clustering on Pv04 and controlled 21%, 26%, 18%, and 16% of genetic variation for each of these respective traits. A QTL for PL was found on Pv09 controlling 5% of genetic variation.


2020 ◽  
Author(s):  
Zhen Huang ◽  
Yang Wang ◽  
Hong Lu ◽  
Xiang Liu ◽  
Lu Liu ◽  
...  

Abstract BackgroundYellow seed breeding is an effective method to improve the oil content in rapeseed. Yellow seed coat color formation is influenced by various factors, and no clear mechanisms are known. In this study, Bulked segregant RNA-Seq (BSR-Seq) of BC9 population of Wuqi mustard (yellow seed) and Wugong mustard (brown seed) was used to identity the candidate genes controlling the yellow seed color in Brassica juncea L.ResultsYellow seed coat color gene was mapped to chromosome A09, and differentially expressed genes (DEGs) between brown and yellow bulks enriched in the flavonoid pathway. A significant correlation between the expression of BjF3H and BjTT5 and the content of the seed coat color related indexes was identified. Two intron polymorphism (IP) markers linked to the target gene were developed around BjF3H. Therefore, BjF3H was considered as the candidate gene. The BjF3H coding sequences (CDS) of Wuqi mustard and Wugong mustard are 1071-1077bp, encoding protein of 356-358 amino acids. One amino acid change (254, F/V) was identified in the conserved domain. This mutation site was detected in four Brassica rapa (B. rapa) and six Brassica juncea (B. juncea) lines, but not in Brassica napus (B. napus).ConclusionsThe results indicated BjF3H is a candidate gene that related to yellow seed coat color formation in Brassica juncea and provided a comprehensive understanding of the yellow seed coat color mechanism.


1999 ◽  
Vol 124 (6) ◽  
pp. 649-653 ◽  
Author(s):  
Mark J. Bassett ◽  
Colleen Shearon ◽  
Phil McClean

Inheritance of two phenotypes, the virgarcus pattern of partly colored seedcoats and the margo d seedcoat pattern, were studied in common bean (Phaseolus vulgaris L.) materials that segregated jointly for genes controlling the two phenotypes to test the hypothesis of allelism of two genes, D and Z. The F2 progeny from the cross j margo BC3 5-593 × t z virgarcus BC3 5-593 produced an unexpected phenotypic class, margo d, suggesting possible allelism of D and Z. The F2 also produced another unexpected phenotypic class, white seedcoat, for which the genetic hypothesis t j z was made. The F2 from the cross t j marginata BC3 5-593 × t z virgarcus BC3 5-593 provided supporting evidence for the new genotype, t j z, for a white seedcoat. Analysis of the F2 and F3 progenies of 80 random F2 plants from the cross t z virgarcus BC3 5-593 × d j (margo d) BC3 5-593 provided support for the hypothesis that the D and Z loci are allelic. Production of two different phenotypes (white vs. white with two tiny pale gray dots, one each at the raphe and micropyle) for t J/j z in two different genetic and cytoplasmic backgrounds is discussed. The F2 from the crosses d j (margo d) BC2 5-593 × j v margo BC2 5-593 and d j (margo d) BC3 5-593 × j margo BC3 5-593 segregated for d (vs. D) phenotypes, which were found not to be independent of a randomly amplified polymorphic DNA (RAPD) marker (AM10560) associated (1.4 cM) with the Z locus. Because the Z gene symbol has priority, we propose to retain Z for the locus.


1994 ◽  
Vol 47 (3) ◽  
pp. 442-487 ◽  
Author(s):  
Michele Fromson

The present study proposes that Willaert's Musica nova was written to commemorate the city of Florence, homeland of two of the composer's most devoted patrons, Neri Capponi and Ruberto Strozzi. Supporting evidence for this new hypothesis is culled from extant documents relating to the composition, publication, performance, and reception history of this music; the texts Willaert set in his madrigals and motets; and perhaps most unexpectedly, the texts of numerous liturgical melodies whose opening phrases are quoted in his dense counterpoint. For Willaert's Florentine patrons, these melodic citations and the texts to which they allude constituted a powerful symbolic network that served to commemorate their native city, its fallen Republic, and the most prominent spokesman for that government, the religious reformer Girolamo Savonarola.


2016 ◽  
Vol 14 (1) ◽  
pp. e0701 ◽  
Author(s):  
Ana Rivera ◽  
Pedro A. Casquero ◽  
Sara Mayo ◽  
Antonio Almirall ◽  
Marçal Plans ◽  
...  

<p>The Spanish National Plant Genetic Resource Center’s core collection of bean germplasm includes 202 accessions selected from more than 3000 accessions in function of passport data, seed phenotype, genetic background, and agronomic traits. To acquire more useful information about these accessions, we cultivated and characterized them for sensory and culinary traits. We found considerable variation for culinary and sensory traits of the cooked beans (mean coefficients of variation: 41% for the sensory traits and 40% for the culinary traits). The large dataset enabled us to study correlations between sensory and culinary traits and among these traits and geographic origin, seed color, and growth habit. Greater proportion of white in the seed coat correlated positively with brightness and negatively with mealiness (r=0.60, r=-0.60, <em>p</em>&lt;0.001, respectively). Mealiness correlated negatively with seed-coat roughness and rate of water absorption (r=-0.60, r=-0.53, <em>p</em>&lt;0.001, respectively). Materials of Andean origin had lower seed-coat brightness (<em>p</em>&lt;0.01) and seed-coat roughness, and greater seed-coat perceptibility, mealiness, flavor, and aroma (<em>p</em>&lt;0.001) than materials of Mesoamerican origin. Growth habit failed to correlate with culinary or sensory traits. Breeders can benefit from the information about this core collection available at <a href="http://wwwsp.inia.es/Investigacion/centros/crf/BasesDatos/Bases">www.crf.inia.es/crfesp/paginaprincipaljudia</a>.asp.</p>


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 977
Author(s):  
Ai Lin ◽  
Jinqi Ma ◽  
Fei Xu ◽  
Wen Xu ◽  
Huanhuan Jiang ◽  
...  

Yellow seed coat color is a desirable characteristic in rapeseed (Brassica napus), as it is associated with higher oil content and higher quality of meal. Alternative splicing (AS) is a vital post-transcriptional regulatory process contributing to plant cell differentiation and organ development. To identify novel transcripts and differences at the isoform level that are associated with seed color in B. napus, we compared 31 RNA-seq libraries of yellow- and black-seeded B. napus at five different developmental stages. AS events in the different samples were highly similar, and intron retention accounted for a large proportion of the observed AS pattern. AS mainly occurred in the early and middle stage of seed development. Weighted gene co-expression network analysis (WGCNA) identified 23 co-expression modules composed of differentially spliced genes, and we picked out two of the modules whose functions were highly associated with seed color. In the two modules, we found candidate DAS (differentially alternative splicing) genes related to the flavonoid pathway, such as TT8 (BnaC09g24870D), TT5 (BnaA09g34840D and BnaC08g26020D), TT12 (BnaC06g17050D and BnaA07g18120D), AHA10 (BnaA08g23220D and BnaC08g17280D), CHI (BnaC09g50050D), BAN (BnaA03g60670D) and DFR (BnaC09g17150D). Gene BnaC03g23650D, encoding RNA-binding family protein, was also identified. The splicing of the candidate genes identified in this study might be used to develop stable, yellow-seeded B. napus. This study provides insight into the formation of seed coat color in B. napus.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 309
Author(s):  
Sang Woo Choi ◽  
Jae Eun Kang ◽  
Seong Kyeong Lee ◽  
Sarath Ly ◽  
Jong Il Chung

Anthocyanins from the black soybean seed coat are known to have many pharmaceutical effects. However, black soybean seed contains antinutritional factors such as lipoxygenase, Kunitz trypsin inhibitor (KTI), lectin, and stachyose. The genetic removal of these components will improve the nutritional value of black soybean seed. The objective of this research was to breed a soybean strain with the black seed coat color, green cotyledon color, and tetra recessive allele (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-rs2/rs2) for lipoxygenase, KTI, lectin, and stachyose components. Eight parents were used to breed the tetra null strain. Analysis of lipoxygenase, KTI, lectin, and stachyose components in mature seeds was conducted by SDS-PAGE, Western blot, and HPLC. The soybean line with the black seed coat color, the green cotyledon color, a large seed size, and tetra recessive alleles has purple flowers, a determinate growth habit, and brown pods at maturity. The stem height of the breeding line was 52.3 cm. The 100-seed weight of the breeding line was 35.2 g and the yield (Ton/ha) was 2.50. The stachyose content of the breeding line was 3.30 g/kg. This is the first soybean strain with the black seed coat color, the green cotyledon color, a large seed size, and tetra null alleles (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-rs2/rs2, low content of stachyose, free of lipoxygenase, KTI, and lectin proteins).


Sign in / Sign up

Export Citation Format

Share Document