scholarly journals Sugar Composition of Pectin and Hemicellulose Extracts of Peach Fruit during Softening over Two Harvest Seasons

1996 ◽  
Vol 121 (6) ◽  
pp. 1162-1167 ◽  
Author(s):  
Supreetha Hegde ◽  
Niels O. Maness

Changes in cell wall polysaccharides associated with peach fruit softening were characterized over two harvest seasons. Enzymically inactive cell walls were prepared from mesocarp tissues of peach fruit harvested at three stages of softening. Pectin-associated and hemicellulose-associated polysaccharides were extracted from the cell walls sequentially, and glycosyl residue compositions were determined by GLC. Pectin extracts from both years were richest in galacturonosyl, arabinosyl, and rhamnosyl residues. Hemicellulose extracted with 1 m potassium hydroxide contained a high mole percentage of xylosyl, glucosyl, and fucosyl residues. Hemicellulose extracted with 4 m potassium hydroxide contained a substantial amount of pectin-associated sugar residues in addition to hemicellulose-associated sugar residues. During softening in both years, sugar compositions for cell walls, aqueous phenol-soluble polysaccharides, and imidazole extracts reflected a decrease in galacturonosyl residues and a concomitant increase in arabinosyl residues on a mole percent basis. The degree of change for galacturonosyl residues in these fractions depended on season, with greater variation exhibited from fruit at earlier stages of softening. With the notable exception of the seasonal variation exhibited for galacturonosyl residues in cell walls, the relative stability of other glycosyl compositional changes over seasons indicates conserved changes for pectins and hemicelluloses occur during peach fruit softening.

HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 276B-276
Author(s):  
Supreetha Hegde ◽  
Niels Maness

The mechanism of softening was studied in a rapidly softening peach cultivar `Belle of Georgia' by assessing changes in pectins and hemicellulose from enzymically inactive cell walls. Cell wall preparations were sequentially extracted with imidazole and sodium carbonate (pectin extracts), and potassium hydroxide (hemicellulose extracts). The pectin extracts were particularly enriched in galacturonic acid, arabiiose and rhamnose, and contained only small amounts of hemicellulose associated sugars. Hemicellulose extracts were enriched in xylose, glucose, mannose, and fucose. More tightly bound hemicellulose fractions contained considerable amounts of pectin associated sugars. The proportion of pectin associated sugars in hemicellulose extracts was greater for cell wall extracts of softened fruit. Some possible relationships between pectin/hemicellulose solubility and fruit softening will be presented. Work was supported by USDA grant 90-34150-5022 and the Oklahoma Agricultural Experiment Station.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 817B-817
Author(s):  
Niels O. Maness ◽  
Donna Chrz ◽  
Joseph C. Goffreda

The `Stony Hard' gene of peach conferred a unique ability to manipulate softening and textural properties of the fruit by controlling the concentration and duration of exposure to ethylene. Fruit ripened in ethylene-free air softened very slowly. Exposure of fruit to 1 ppm ethylene continuously for 48 h, or discontinuously at 100 ppm over the same time period, significantly accelerated softening—to a normal texture. Exposure of fruit to 100 ppm ethylene continuously for 48 h induced softening to the same level, but to a mealy texture. We have prepared cell walls and conducted sequential chemical extractions from fruit exposed to the ethylene treatments above. Galacturonic acid content of chelator soluble pectin fractions decreased for mealy fruit, compared to fruit with normal texture, indicating that selective pectin degradation was associated with mealiness. Other differences in polysaccharide sugar composition and apparent molecular size associated with slow, accelerated, and abnormal softening in peach fruit will be addressed.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


1983 ◽  
Vol 34 (3) ◽  
pp. 241 ◽  
Author(s):  
CW Ford

Stem cell walls of pangola grass (Digitaria decumbens) were ground to two particle sizes (c. 1 and 0.1 mm diameter), and incubated with cellulase (ex. Trichoderma viride) for varying times before and after delignification. Total cell walls finely ground (0.1 mm) with a Spex Shatterbox mill were initially degraded more rapidly (to 24 h) than delignified 1 mm particles. Thereafter the delignified material was solubilized to a greater extent. Subsequent specific determinations of cell wall polysaccharides indicated that delignification increased the rate of hemicellulose degradation to a greater extent than did particle size reduction, whereas the opposite was found for cellulose. The difference between delignified and Spex-ground residues, in terms of the amount of polysaccharide digested, was much greater for cellulose than hemicellulose. It is concluded that structural features play a more important role in limiting cellulase degradation of cellulose than does association with lignin, the reverse being so for hemicellulose.


2017 ◽  
Vol 142 (4) ◽  
pp. 246-259 ◽  
Author(s):  
Yunqing Zhu ◽  
Wenfang Zeng ◽  
Xiaobei Wang ◽  
Lei Pan ◽  
Liang Niu ◽  
...  

Pectins are synthesized and secreted to the cell wall as highly methyl-esterified polymers and demethyl-esterified by pectin methylesterases (PMEs), which are regulated by pectin methylesterase inhibitors (PMEIs). PMEs and PMEIs are involved in pectin degradation during fruit softening; however, the roles of the PME and PMEI gene families during fruit softening remain unclear. Here, 71 PME and 30 PMEI genes were identified in the peach (Prunus persica) genome and shown to be unevenly distributed on all eight chromosomes. The 71 PME genes comprised 36 Type-1 PMEs and 35 Type-2 PMEs. Transcriptome analysis showed that 11 PME and 15 PMEI genes were expressed during fruit ripening in melting flesh (MF) and stony-hard (SH) peaches. Three PME and five PMEI genes were expressed at higher levels in MF than in SH fruit and exhibited softening-associated expression patterns. Upstream regulatory cis elements of these genes related to hormone response, especially naphthaleneacetic acid and ethylene, were investigated. One PME (Prupe.7G192800) and two PMEIs (Prupe.1G114500 and Prupe.2G279800), and their promoters were identified as potential targets for future studies on the biochemical metabolism and regulation of fruit ripening. The comprehensive data generated in this study will improve our understanding of the PME and PMEI gene families in peach. However, further detailed investigation is necessary to elucidate the biochemical function and regulation mechanism of the PME and PMEI genes during peach fruit ripening.


2019 ◽  
Vol 245 ◽  
pp. 163-170 ◽  
Author(s):  
Sinath Chea ◽  
Duk Jun Yu ◽  
Junhyung Park ◽  
Hee Duk Oh ◽  
Sun Woo Chung ◽  
...  

2003 ◽  
Vol 29 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroko Hayama ◽  
Akiko Ito ◽  
Takaya Moriguchi ◽  
Yoshiki Kashimura

Biologia ◽  
2010 ◽  
Vol 65 (1) ◽  
Author(s):  
Mayuva Areekijseree ◽  
Thanaporn Chuen-Im ◽  
Busaba Panyarachun

AbstractSamples of abnormal mud crabs, Scylla serrata (Forskål, 1755) (Decapoda: Portunidae), were collected from crab farms in Samutsongkhram Province, Thailand. These crabs had hard carapaces, red chelipeds and joints, pale hepatopancreas, gills, and soft muscles. They were almost immobile and finally died. The haemolymph revealed three stages of the syndrome, namely orange, orange-white, and milky-white in colors. The haemolymph, integument, hepatopancreas, gills, abdominal and claw muscle, stomach, and heart were dissected and histologically examined using transmission and scanning electron microscopy. Closer examinations found infection with rod-, curve rod-, or coccus-shape bacteria with thin and thick cell walls in all investigated organs and haemolymph. Isolation of the microorganisms from the infected tissues of red sternum syndrome crabs resulted in five types of bacteria. No microorganism growth was observed in normal crabs. Interestingly, the types of isolated bacteria can be classified according to the severity of the disease. Additionally, the degree of bacterial infection found was consistent with the stages of the disease. It was postulated that the bacteria entered the crabs via the gills, and then migrated through circulating haemocytes, before reaching the internal organs.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 761
Author(s):  
Weinan Huang ◽  
Yating Nie ◽  
Nan Zhu ◽  
Yifan Yang ◽  
Changqing Zhu ◽  
...  

Softening of fruit during the postharvest storage, which is mainly associated with both compositional and spatial changes of polysaccharides within cell wall, affects the texture and quality of fruit. Current research on the fruit softening mechanism lacks an understanding of the overall softening at the cell level. The objective of this work was to investigate the change in the spatial distribution of cell wall polysaccharides in peach flesh cells at both single- and multiple-cell levels in a label-free way during the postharvest storage. Nonmelting peaches (Prunus persica L. Batsch cv.”Zhonghuashoutao”) at commercial maturity were stored at 0 °C and 20 °C. Firmness measurement and chemical analysis were performed at each storage time. In addition, three molecular imaging techniques, namely confocal Raman microspectroscopy (CRM), Fourier transform infrared microspectroscopy (FTIRM), and stimulated Raman scattering microscopy (SRS) were used to visualize changes in the spatial distribution of cell wall polysaccharides of peach fruit in a label-free way during the postharvest storage. The combination of CRM and FTIRM provided complementary spectral information to visualize the spatial changes of cellulose, hemicellulose, and pectin in the cell wall of peach flesh during softening at the single-cell level, and found that the cell wall polysaccharides tended to be concentrated in the cell corner of parenchymal cells at the late stage. Furthermore, SRS, which is an ultrafast Raman imaging technique (approximately three or four orders of magnitude faster than CRM), was used for high-throughput cell wall phenotypes measurement. Different degradation degrees of parenchymal cells during fruit softening were found based on the gray-scale statistical analysis of SRS data. In general, cell wall polysaccharides decreased during softening and tended to be concentrated in the cell corner for most parenchymal cells at the late stage, but there were also some cells not in line with the whole softening trends. The results show that there were differences in the content and spatial changes of cell wall polysaccharides among parenchymal cells of peach fruit during the softening process, and the hybrid use of CRM, FTIRM, and SRS is a promising method for simultaneous visualization of changes in cell wall polysaccharides of peach.


1990 ◽  
Vol 269 (2) ◽  
pp. 393-402 ◽  
Author(s):  
P Ryden ◽  
R R Selvendran

1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN′N′-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.


Sign in / Sign up

Export Citation Format

Share Document