hemicellulose degradation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
pp. 199-220
Author(s):  
Wichanee Bankeeree ◽  
Sehanat Prasongsuk ◽  
Pongtharin Lotrakul ◽  
Suraini Abd‐Aziz ◽  
Hunsa Punnapayak

2021 ◽  
Author(s):  
◽  
Jonathan Craig Dunne

<p>Butyrivibrio proteoclasticus B316T is a Gram-positive, lignocellulose degrading bacterium that is prevalent in the rumen of animals grazing pasture, and is one of only a few rumen microbes known to degrade and utilise xylan in vitro. Xylan is a hemicellulose that comprises up to 45% of the polysaccharide component of ruminant forages. Often as little as 30% of the total energy content of forages is utilised by the ruminant due to poor hemicellulose degradation by the fibrolytic rumen microbes. An opportunity exists to improve forage degradation in the rumen, which is predicted to improve the productivity of forage fed ruminants. A clearer understanding of the strategies employed by fibrolytic rumen microbes to degrade and utilise lignocellulose is important in realising this goal. Almost 10% of the B. proteoclasticus genome encodes proteins involved in polysaccharide metabolism and transport, which includes 134 fibrolytic enzymes that are active upon plant fibre. Many of these are clustered into one of 36 polysaccharide utilisation loci that also contain transmembrane transporters, transcriptional regulators, environmental sensors and genes involved in further polysaccharide metabolism. Gel-based and gel-free proteomic analyses of the cytosolic, cell-associated, and secreted fractions of cells grown on xylan were used to identify proteins involved in the degradation, assimilation, and metabolism of hemicellulose. A set of 416 non-redundant proteins were identified, which included 12 extracellular and 24 cytosolic polysaccharidases, and 59 proteins involved in the uptake and further metabolism of polysaccharide degradation products, many of which were substrate-binding protein components of ATP-driven transporter systems. In cells grown on xylan, several of these proteins displayed significant protein abundance changes relative to cells grown on the monomeric sugar xylose, in a pattern that reflected the growth substrates used. A model of xylan degradation by B. proteoclasticus based on these results hypothesises that B. proteoclasticus attacks the xylan backbone and main substituent groups of hemicellulose in the extracellular space, assimilates the xylooligosaccharides and performs the final stages of degradation within the cell. These results provide insight into a xylan degrading enzyme system that has evolved to efficiently degrade and utilise hemicellulose, extend our understanding of the enzymes that are likely to play important roles in hemicellulose degradation, and support the notion that Butyrivibrio species are important contributors to rumen fibre degradation.</p>


2021 ◽  
Author(s):  
◽  
Jonathan Craig Dunne

<p>Butyrivibrio proteoclasticus B316T is a Gram-positive, lignocellulose degrading bacterium that is prevalent in the rumen of animals grazing pasture, and is one of only a few rumen microbes known to degrade and utilise xylan in vitro. Xylan is a hemicellulose that comprises up to 45% of the polysaccharide component of ruminant forages. Often as little as 30% of the total energy content of forages is utilised by the ruminant due to poor hemicellulose degradation by the fibrolytic rumen microbes. An opportunity exists to improve forage degradation in the rumen, which is predicted to improve the productivity of forage fed ruminants. A clearer understanding of the strategies employed by fibrolytic rumen microbes to degrade and utilise lignocellulose is important in realising this goal. Almost 10% of the B. proteoclasticus genome encodes proteins involved in polysaccharide metabolism and transport, which includes 134 fibrolytic enzymes that are active upon plant fibre. Many of these are clustered into one of 36 polysaccharide utilisation loci that also contain transmembrane transporters, transcriptional regulators, environmental sensors and genes involved in further polysaccharide metabolism. Gel-based and gel-free proteomic analyses of the cytosolic, cell-associated, and secreted fractions of cells grown on xylan were used to identify proteins involved in the degradation, assimilation, and metabolism of hemicellulose. A set of 416 non-redundant proteins were identified, which included 12 extracellular and 24 cytosolic polysaccharidases, and 59 proteins involved in the uptake and further metabolism of polysaccharide degradation products, many of which were substrate-binding protein components of ATP-driven transporter systems. In cells grown on xylan, several of these proteins displayed significant protein abundance changes relative to cells grown on the monomeric sugar xylose, in a pattern that reflected the growth substrates used. A model of xylan degradation by B. proteoclasticus based on these results hypothesises that B. proteoclasticus attacks the xylan backbone and main substituent groups of hemicellulose in the extracellular space, assimilates the xylooligosaccharides and performs the final stages of degradation within the cell. These results provide insight into a xylan degrading enzyme system that has evolved to efficiently degrade and utilise hemicellulose, extend our understanding of the enzymes that are likely to play important roles in hemicellulose degradation, and support the notion that Butyrivibrio species are important contributors to rumen fibre degradation.</p>


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 482
Author(s):  
Huizhen Yang ◽  
He Zhang ◽  
Huizhen Qiu ◽  
Dominic Kwadwo Anning ◽  
Mengchan Li ◽  
...  

Lignocellulosic materials have a complex physicochemical composition and structure that reduces their decomposition rate and hinders the formation of humic substances during composting. Therefore, a composting experiment was conducted to evaluate the effects of different C/N ratios on lignocellulose (cellulose, hemicellulose and lignin) degradation and the activities of corresponding enzymes during aerobic composting. The study had five C/N ratios, namely, T1 (C/N ratio of 15), T2 (C/N ratio of 20), T3 (C/N ratio of 25), T4 (C/N ratio of 30) and T5 (C/N ratio of 35). The results showed that treatments T3 and T4 had the highest rate of degradation of cellulose and hemicellulose, while treatment T3 had the highest rate of degradation of lignin. Among the five treatments, treatment T3 enhanced the degradation of the lignocellulose constituents, indicating a degradation rate of 6.86–35.17%, 15.63–44.08% and 31.69–165.60% for cellulose, hemicellulose and lignin, respectively. The degradation of cellulose and lignin occurred mainly at the thermophilic and late mesophilic phases of composting, while hemicellulose degradation occurred at the maturation phase. Treatment T3 was the best C/N ratio to stimulate the activities of manganese peroxidase, lignin peroxidase, polyphenol oxidase and peroxidase, which in turn promoted lignocellulose degradation.


3 Biotech ◽  
2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Jaire A. Ferreira Filho ◽  
Rafaela R. Rosolen ◽  
Deborah A. Almeida ◽  
Paulo Henrique C. de Azevedo ◽  
Maria Lorenza L. Motta ◽  
...  

2021 ◽  
Vol 7 (10) ◽  
pp. 854
Author(s):  
Felix Heeger ◽  
Elizabeth C. Bourne ◽  
Christian Wurzbacher ◽  
Elisabeth Funke ◽  
Anna Lipzen ◽  
...  

Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.


Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 657-665
Author(s):  
MILICA GALIĆ ◽  
‪JASMINA ĆILERDŽIĆ ◽  
JELENA VUKOJEVIĆ ◽  
MIRJANA STAJIĆ

Grifola frondosa HAI 1232 was tested for ligninolytic enzyme activities and for lignin, cellulose and hemicellulose degradation during cultivation on eight common agro-forestry residues in Serbia. Wheat straw was favorable lignocellulosic for the production of Mn-dependent and Mn-independent peroxidases (2513.89 and 354.17 U L-1, respectively), while selected residues inhibited the synthesis of laccases. The highest lignin removal was observed during fermentation of blackberry sawdust (36.75%), while the highest selectivity index was recorded on oak sawdust (4.34). The dry matter loss varied between 8.17% in corn stalks and 14.16% in apple sawdust. According to the presented results, it can be concluded that G. frondosa HAI 1232 could be an important participant in various biotechnological processesdue to its high capacity to selectively degrade different agro-forestry residues.


2021 ◽  
Vol 12 ◽  
Author(s):  
María J. López ◽  
Macarena M. Jurado ◽  
Juan A. López-González ◽  
María J. Estrella-González ◽  
María R. Martínez-Gallardo ◽  
...  

Composting involves the selection of a microbiota capable of resisting the high temperatures generated during the process and degrading the lignocellulose. A deep understanding of the thermophilic microbial community involved in such biotransformation is valuable to improve composting efficiency and to provide thermostable biomass-degrading enzymes for biorefinery. This study investigated the lignocellulose-degrading thermophilic microbial culturome at all the stages of plant waste composting, focusing on the dynamics, enzymes, and thermotolerance of each member of such a community. The results revealed that 58% of holocellulose (cellulose plus hemicellulose) and 7% of lignin were degraded at the end of composting. The whole fungal thermophilic population exhibited lignocellulose-degrading activity, whereas roughly 8–10% of thermophilic bacteria had this trait, although exclusively for hemicellulose degradation (xylan-degrading). Because of the prevalence of both groups, their enzymatic activity, and the wide spectrum of thermotolerance, they play a key role in the breakdown of hemicellulose during the entire process, whereas the degradation of cellulose and lignin is restricted to the activity of a few thermophilic fungi that persists at the end of the process. The xylanolytic bacterial isolates (159 strains) included mostly members of Firmicutes (96%) as well as a few representatives of Actinobacteria (2%) and Proteobacteria (2%). The most prevalent species were Bacillus licheniformis and Aeribacillus pallidus. Thermophilic fungi (27 strains) comprised only four species, namely Thermomyces lanuginosus, Talaromyces thermophilus, Aspergillus fumigatus, and Gibellulopsis nigrescens, of whom A. fumigatus and T. lanuginosus dominated. Several strains of the same species evolved distinctly at the stages of composting showing phenotypes with different thermotolerance and new enzyme expression, even not previously described for the species, as a response to the changing composting environment. Strains of Bacillus thermoamylovorans, Geobacillus thermodenitrificans, T. lanuginosus, and A. fumigatus exhibiting considerable enzyme activities were selected as potential candidates for the production of thermozymes. This study lays a foundation to further investigate the mechanisms of adaptation and acquisition of new traits among thermophilic lignocellulolytic microorganisms during composting as well as their potential utility in biotechnological processing.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marcus Stabel ◽  
Julia Hagemeister ◽  
Zacharias Heck ◽  
Habibu Aliyu ◽  
Katrin Ochsenreither

Degradation of lignocellulosic materials to release fermentable mono- and disaccharides is a decisive step toward a sustainable bio-based economy, thereby increasing the demand of robust and highly active lignocellulolytic enzymes. Anaerobic fungi of the phylum Neocallimastigomycota are potent biomass degraders harboring a huge variety of such enzymes. Compared to cellulose, hemicellulose degradation has received much less attention; therefore, the focus of this study has been the enzymatic xylan degradation of anaerobic fungi as these organisms produce some of the most effective known hydrolytic enzymes. We report the heterologous expression of a GH43 xylosidase, Xyl43Nc, and a GH11 endoxylanase, X11Nc, from the anaerobic fungus Neocallimastix californiae in Escherichia coli. The enzymes were identified by screening of the putative proteome. Xyl43Nc was highly active against 4-Nitrophenol-xylopyranosides with a Km of 0.72 mM, a kcat of 29.28 s−1, a temperature optimum of 32°C and a pH optimum of 6. When combined, Xyl43Nc and X11Nc released xylose from beechwood xylan and arabinoxylan from wheat. Phylogenetic analysis revealed that Xyl43Nc shares common ancestry with enzymes from Spirochaetes and groups separately from Ascomycete sequences in our phylogeny, highlighting the importance of horizontal gene transfer in the evolution of the anaerobic fungi.


2021 ◽  
Vol 16 (7) ◽  
pp. 92-100
Author(s):  
Giridhar Poosarla Venkata ◽  
T.S. Chandra

We previously demonstrated the production and purification of novel halo-acid-alkali-thermo-stable xylanase from halophilic bacterium Gracilibacillus sp. TSCPVG using submerged fermentation (SmF). In this work, we further showed the production of halophilic xylanase by solid state fermentation (SSF) from halophilic bacterium Gracilibacillus sp. TSCPVG using cheap solid-substrate wheat bran. High levels of enzyme titers (657 U/g dw) were obtained after varying certain SSF parameters such as incubation period, particle size, moisture ratio, salinity, pH, temperature and by supplementing different carbon and nitrogen sources externally to the fermentation medium. This bacterium could be a novel strain due to its ability to produce high titers of xylanase with extremophilic characters even under the conditions of SSF. Thus, this beneficiary role may lead to a substantial reduction in the overall cost of enzyme production and may have a huge impact on the economics of hemicellulose degradation under high saline conditions.


Sign in / Sign up

Export Citation Format

Share Document