scholarly journals Root Distribution and Yield of Direct Seeded and Transplanted Watermelon

1999 ◽  
Vol 124 (5) ◽  
pp. 458-461 ◽  
Author(s):  
D.S. NeSmith

Transplanting generally results in more rapid stand establishment than direct seeding for cucurbit crops. A 2-year field study was conducted to examine the pattern of rooting of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nak.] following usage of different planting methods, and to determine subsequent effects on crop yield. Root length was assessed by obtaining soil cores three times per growing season to a depth of 75 cm. Transplanted watermelons generally had greater root length density in the upper 30 cm of soil 4 to 7 weeks after planting (WAP). However, by 11 to 12 WAP root distribution was similar over the entire 75 cm soil profile for the two planting methods. Total marketable yields were comparable for direct seeded and transplanted watermelons during 1995, but transplanted watermelon yield exceeded direct seeded yield by 40% in 1996. In both years, 90% to 100% of the marketable yield of transplanted watermelons was obtained at the first harvest, compared to 0% to 55% for direct seeded watermelons. These findings suggest that rapid root proliferation of transplanted watermelons may be an important factor in their earlier establishment and increased early yields as compared to direct seeded watermelons.

HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 637-641 ◽  
Author(s):  
Timothy L. Grey ◽  
David C. Bridges ◽  
D. Scott NeSmith

Field studies were conducted in 1993, 1994, and 1995 to determine tolerance of seeded and transplanted watermelon [Citrullus lanatus (Thunb.) Matsum and Nak.] to clomazone, ethalfluralin, and pendimethalin using method of stand establishment (directseeded vs. transplanted) and time of herbicide application [preplant soil incorporated (PPI), preplant to the surface (PP), or postplant to the surface (POP)] as variables. Yield and average fruit weight in plots with clomazone were equal to or greater than those in control plots for the 3-year study regardless of method of application. Bleaching and stunting were evident with clomazone in early-season ratings, but injury was transient and did not affect quality or yield. Of the three herbicides, ethalfluralin PPI resulted in the greatest injury, stand reduction, and yield reduction of the three herbicides. Pendimethalin (PPI, PP, or POP) reduced yield of direct-seeded but not of transplanted watermelon. Chemical names used: 2-[(-2-chlorophenyl)methyl]-4, 4-dimethyl-3-isoxazolidinone (clomazone); N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4-(trifluoromethyl) benzenamine (ethalfluralin); N-(1-ethylopropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin).


1992 ◽  
Vol 43 (1) ◽  
pp. 19 ◽  
Author(s):  
KY Chan ◽  
JA Mead

Root growth and distribution of wheat under different tillage practices was studied in a 4-year-old tillage experimental site at Cowra, N.S.W. Tillage affected root density as well as distribution. Up to 98 days after sowing, root length density was lower (P < 0.05) in the 0.05-0.10 m layer of the direct-drilled soil than the conventionally cultivated soil. Poor root growth found in direct-drilled soils, which was significantly related to the poor shoot growth, was not caused by soil physical conditions, viz. higher bulk density and soil strength. Rather, biological factors were involved because fumigation completely eliminated the poor shoot growth and significantly increased root length density of the direct drilled soils. Compared to a compaction treatment, roots grown under direct drilling, in addition to having lower density, also had impaired function. Under conventional cultivation, significantly lower root length density was found in the surface soil layer (0-0.05 m) and maximum root length density was found in the 0-05-0.10 m layer. Fumigation did not change the root distribution pattern. This tillage-induced difference in root distribution reflected less favourable surface soil conditions as a result of cultivation, e.g. seedbed slumping, compared to the soil under direct drilling.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 899
Author(s):  
Daniel I. Leskovar ◽  
Yahia A. Othman

The objective of this two-year field study was to assess the influence of stand establishment methods (direct seeding or transplanting) on root growth dynamics, shoot morphology, leaf physiology, yield, and quality of globe artichoke (Cynara cardunculus). Three artichoke cultivars were evaluated, ‘Green Globe Improved’ (GGI), ‘Imperial Star’ (IS), and ‘Romolo’ (ROM). Plants established with the transplanting method had higher mean root length intensity (La), root length, and root surface area as compared to plants established by direct seeding. The topsoil (0–20 cm) had on average higher La, root length, and root surface area than deeper soil profiles. Transplanted plants had higher plant shoot width and leaf area index (LAI) chlorophyll content index (SPAD) than direct seeded plants at the vegetative stage in 2015. The improvement of root and shoot growth in transplants (compared to direct seeding) also resulted in higher (p < 0.05) marketable yield (21.1 vs. 19.9 ton ha−1 in 2015 and 18.3 vs. 13.7 ton ha−1 in 2016). Additionally, 46–50% of the total yield occurred during the first 30 days of harvest in the transplanting method compared to 13–38% for direct seeding. No significant differences were found between planting methods or cultivars in leaf-level gas exchange (photosynthesis, stomatal conductance, and transpiration) and cynarin concentration in the marketable heads. Although chlorogenic acid was similar in both establishment methods in 2015, direct seeding had higher concentration in 2016. Comparing cultivars, GGI had higher root length, surface area, root volume, and earlier and higher marketable yield than ROM. However, ROM had higher mean root length intensity (La; total root length per specific area in soil profile) than GGI in both growing seasons. This study showed significant and consistent improvements in root and shoot traits, and yield for transplants as compared to direct seeded plants.


HortScience ◽  
1992 ◽  
Vol 27 (3) ◽  
pp. 228-230 ◽  
Author(s):  
J.L. Walworth ◽  
D.E. Carling ◽  
G.J. Michaelson

Head lettuce (Lactuca sativa L.) cv. Salinas was produced in field trials in southcentral Alaska with varying planting dates, planting methods, N sources, and N application rates. Variables measured included head weight and diameter and harvest date. Nitrogen source had little effect on head weight. Direct-seeded lettuce produced heaviest beads from early plantings; transplants produced heaviest heads when planted in mid- to late season. Transplanting generally produced heavier heads than direct-seeding. Head weight of transplanted and direct-seeded lettuce was maximized with ≈112 kg N/ha. The data suggest that 112 kg N/ha may be suitable for lettuce direct-seeded or transplanted throughout the growing season.


1978 ◽  
Vol 91 (1) ◽  
pp. 91-102 ◽  
Author(s):  
P. J. Gregory ◽  
M. McGowan ◽  
P. V. Biscoe ◽  
B. Hunter

SummaryThe production of root axes and the growth of the root system are reported for a commercially grown crop of Maris Huntsman winter wheat. Soil cores were extracted on 17 occasions during the growing season permitting a detailed study of root length and root dry weight with depth and time.Production of seminal root axes was complete by the beginning of March when all plants possessed six (occasionally seven) axes which persisted throughout the life of the crop. Nodal axes were produced continuously from mid-February until late May and finally numbered approximately 20 stem nodal axes per main stem. Total root dry weight increased exponentially until the beginning of April and then almost linearly to reach a maximum of 105 g root/m2 field in mid-June (anthesis). After anthesis, total root dry weight decreased but root growth continued below 80 cm. From April onwards, approximately 65% of the total root dry weight was in the 0–30 cm layer.


HortScience ◽  
2013 ◽  
Vol 48 (8) ◽  
pp. 1021-1026 ◽  
Author(s):  
Gilbert Miller ◽  
Ahmad Khalilian ◽  
Jeffrey W. Adelberg ◽  
Hamid J. Farahani ◽  
Richard L. Hassell ◽  
...  

Delineating the depth and extent of the watermelon [Citrullus lanatus (Thumb.) Matsum. & Nak.] root zone assists with proper irrigation management and minimizes nutrient leaching. The objective of this 3-year field study was to measure root distribution and root length density of watermelon (cv. Wrigley) grafted on two different rootstocks (Lagenaria siceraria cv. ‘FR Strong’ and Cucurbita moschata × Cucurbita maxima cv. Chilsung Shintoza) and grown under three soil moisture treatments. Irrigation treatments tested were: no irrigation (NI), briefly irrigated for fertigation and early-season plant establishment; minimally irrigated (MI), irrigated when soil moisture in top 0.30 m of soil fell below 50% available water capacity (AWC); well irrigated (WI), irrigated when soil moisture in top 0.30 m of soil fell below 15% (AWC). Root length density (RLD) was measured from 75-cm-deep soil cores at two locations three times per growing season and a third location at the end of the season. Cores 1 and 2 sample locations were 15 cm to the side of each plant: Core 1 on the same side as the drip tape and Core 2 on the opposite side. At the end of the season, Core 3 was taken 15 cm outside of the bed in bare ground. RLD was significantly greater in the 0- to 30-cm soil depth and dropped dramatically below 30 cm; it was not significantly affected by irrigation treatment or rootstock. Core 1, next to the drip tape, had greater RLD than Core 2, 30 cm from drip tape, but only at the later sampling dates. Roots were found in Core 3 at all depths, but the RLD was significantly less than that measured in Cores 1 and 2. These findings suggest that the effective root zone depth for watermelon is 0 to 30 cm and that the particular scion/rootstock combinations tested in this study do not differ in root system size or location.


2003 ◽  
Vol 43 (5) ◽  
pp. 503 ◽  
Author(s):  
D. J. Firth ◽  
R. D. B. Whalley ◽  
G. G. Johns

Whole-tree excavations, root-core and minirhizotron studies indicate that the grafted macadamia tree root system is relatively shallow and spreading, with a short taproot and most of the fibrous root system near the soil surface, while ungrafted trees have a longer taproot. The length of fibrous roots diminished with depth and distance from the trunk. This pattern is consistent with other fruit trees, in that the highest density is generally within 1 m of the trunk. Values obtained in core samples in this study were 4.97 (± 0.43) cm/cm3 and 1.67 (± 0.45) cm/cm3 for 0–10 cm and 10–20 cm at 0.5 m from the trunk, and 2.34 and 1.08 cm/cm3, respectively, at 1 m from the trunk at Clunes. These values were similar to those obtained in separate studies in 1991–93, involving assessments at 5�cm depth increments down to 15 cm, where mean root length densities were 2.0–3.5 cm/cm3 and 1.3–1.9 cm/cm3 at 0–5 cm and 5–15 cm depth, respectively, 1.4 m from the trunk. Root length under old trees in bare soil at Dorroughby and Clunes, using minirhizotrons (0.25–0.40 cm/cm2) and soil cores (1.14 and 3.50 cm/cm3, respectively), was similar to that found at other sites in the study area (minirhizotrons 0.28–0.33 cm/cm2; soil cores 1.25–2.80 cm/cm3). There is an apparent lower rate of decrease in root length density with increasing distance from the trunk at 10–20 cm compared with 0–10 cm. New root growth occurred predominantly in autumn, but some new fibrous roots were produced in early winter and spring. Proteoid roots were found in abundance in soil cores and adjacent to minirhizotron tubes and there were more of them in the root systems of younger trees at Clunes than with older trees at Dorroughby. Proteoid roots were found at a greater depth than previously recorded for other Proteaceae species, and appeared to retain their function in relatively dry conditions for more than a year. Non-proteoid fibrous roots at the minirhizotron surface appeared to be functional for about 1.5 years in relatively dry conditions, before decay after the onset of wet soil conditions.The effects of 2 newly established perennial legume groundcovers on the root systems of younger and older macadamia trees were studied over 2.5 years. In general, the presence of groundcover either had no effect on the growth of the macadamia roots or increased the root length density at some sampling dates and some depths. At Clunes, where the proteoid root length density was higher than at Dorroughby, the presence of groundcover was associated with higher proteoid root length density than that with bare ground. Arachis pintoi cv. Amarillo generally had a lower root length density than Lotus pedunculatus.


Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 83
Author(s):  
Promil Mehra ◽  
Pankaj Kumar ◽  
Nanthi Bolan ◽  
Jack Desbiolles ◽  
Susan Orgill ◽  
...  

Tillage management can influence soil physical properties such as soil strength, moisture content, temperature, nutrient and oxygen availability, which in turn can affect crop growth during the early establishment phase. However, a short-term ‘strategic’ conventional tillage (CT) shift in tillage practice in a continuous no-tillage (NT) cropping system may change the soil-pore and root geometry. This study identifies the impact of a tillage regime shift on the belowground soil-pore and root geometry. Micro X-ray computed tomography (µXCT) was used to quantify, measure and compare the soil-pore and root architecture associated with the impact of tillage shift across different plant growth stages. Soil porosity was 12.2% higher under CT in the top 0–100 mm and 7.4% in the bottom 100–200 mm of the soil core compared with NT. Soil-pore distribution, i.e. macroporosity (&gt;75 μm), was 13.4% higher under CT, but mesoporosity (30–75 μm) was 9.6% higher under NT. The vertical distributions of root biomass and root architecture measurements (i.e. root length density) in undisturbed soil cores were 9.6% higher under the NT and 8.7% higher under the CT system respectively. These results suggest that low soil disturbance under the continuous NT system may have encouraged accumulation of more root biomass in the top 100 mm depth, thus developing better soil structure. Overall, µXCT image analyses of soil cores indicated that this tillage shift affected the soil total carbon, due to the significantly higher soil-pore (i.e. pore surface area, porosity and average pore size area) and root architecture (i.e. root length density, root surface density and root biomass) measurements under the CT system.


Sign in / Sign up

Export Citation Format

Share Document