Water relations of winter wheat: 1. Growth of the root system

1978 ◽  
Vol 91 (1) ◽  
pp. 91-102 ◽  
Author(s):  
P. J. Gregory ◽  
M. McGowan ◽  
P. V. Biscoe ◽  
B. Hunter

SummaryThe production of root axes and the growth of the root system are reported for a commercially grown crop of Maris Huntsman winter wheat. Soil cores were extracted on 17 occasions during the growing season permitting a detailed study of root length and root dry weight with depth and time.Production of seminal root axes was complete by the beginning of March when all plants possessed six (occasionally seven) axes which persisted throughout the life of the crop. Nodal axes were produced continuously from mid-February until late May and finally numbered approximately 20 stem nodal axes per main stem. Total root dry weight increased exponentially until the beginning of April and then almost linearly to reach a maximum of 105 g root/m2 field in mid-June (anthesis). After anthesis, total root dry weight decreased but root growth continued below 80 cm. From April onwards, approximately 65% of the total root dry weight was in the 0–30 cm layer.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Admas Alemu ◽  
Tileye Feyissa ◽  
Marco Maccaferri ◽  
Giuseppe Sciara ◽  
Roberto Tuberosa ◽  
...  

Abstract Background Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.


1984 ◽  
Vol 103 (1) ◽  
pp. 59-74 ◽  
Author(s):  
P. B. Barraclough ◽  
R. A. Leigh

SummaryThe effect of sowing date on root growth of high-yielding crops (8–1 It grain/ha, 85% D.M.) of winter wheat (Triticum aestivum L. cv. Hustler) was measured at Rothamsted and Woburn in 1980 and 1981. Roots were sampled by coring on five occasions and changes in root dry weight and length were determined. The average growth rate between March and June was about 1 g/m2/day (200 m/m2/day), over 5 times that measured between December and March. Increases in root weight or length with time were generally exponential to anthesis when the crops had 101–172 g root/m2 (20–32 km/m2). September-sown wheat had more root than October-sown wheat at all times, but whereas early differences in length were maintained throughout the season, root weights converged between March and June. Overall, there was no significant difference in root dry-matter production between sites at anthesis, but there was a substantial difference between years. Differences in root growth between crops were reduced by plotting the amount of root against either the number of days from sowing or accumulated thermal time. Using che latter, root growth between December and June was reasonably linear although there was some indication of a lag below 500 °C days. Regression equations obtained for the relationships between root growth and accumulated thermal time also fitted previously published data and may provide general descriptions of root growth with time.Roots of September-sown crops reached 1 m depth by December but those of October-sown crops were not detectable at this depth until April. For most crops the distribution of roots with depth was reasonably described by an exponential decay function, with over 50% of the roots in the top 20 cm of soil at all times. At Woburn in 1981, a plough-pan restricted roots to the upper soil horizons for most of the season but apparently had little effect on the total amount of root produced. For one of the experimental crops an empirical mathematical function describing the distribution of roots with depth and time is presented.Using the data from this and previously published studies, the relationship between grain yield and the amount of root at anthesis was investigated. Total root length was positively correlated with grain yield but nonetheless similarly yielding crops could have different-sized root systems. Total root dry weight was poorly correlated with grain yield.


1991 ◽  
Vol 42 (7) ◽  
pp. 1271 ◽  
Author(s):  
GJ Blair ◽  
DC Godwin

Lack of data on root growth and relationships between root parameters and P uptake are major limitations to understanding and modelling P efficiency in crop and forage plants. An experiment was conducted whereby two accessions of white clover (Trifolium repens, Chiswick and Ladino) were grown in pots in a P deficient soil fertilized with a low (P5 [kg ha-1]) or high (P40) P application rate. Plants were harvested at 10, 16, 22, 28, 34 and 40 days after transplanting and tops harvested and roots recovered from the pots. Detailed measures of root members were made at 10, 16 and 22 days and these correlated with P uptake. Dry weight of tops of accessions was the same between the two rates of P until day 28. At 40 days, the tops yield of Ladino was higher than Chiswick at P40. Root dry weight increased with increasing P application rate and time from day 16 onwards. Significant differences in root growth only occurred at the 16 and 34 day harvests at P5. Ladino tended to have a greater mean P uptake over time than did Chiswick at both P levels. P uptake was found to be positively correlated with shoot and root dry weight, root length, root number, root volume and surface area, and negatively correlated with mean root diameter and mean length per root. Root extension rate at low P in Ladino was greater than that in Chiswick, which may explain the greater P uptake by Ladino at low P at later harvests in this experiment. The changes in length, diameter and number of roots in the two accessions examined in this study, with time, in response to P, reflect some form of coordination. Chiswick tended to produce many short roots whilst Ladino fewer long roots. Only small differences in P uptake per unit root length were measured, which suggest that total root length or root extension rate is the primary determinant of total P uptake in these accessions of white clover.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 430B-430
Author(s):  
Amy N. Wright ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Root growth is a critical factor in landscape establishment of container-grown woody ornamental species. Kalmia latifolia (mountain laurel) often does not survive transplanting from containers into the landscape. The objective of this experiment was to compare rate of root growth of mountain laurel to that of Ilex crenata `Compacta' (`Compacta' holly) and Oxydendrum arboreum (sourwood). Six-month-old tissue-cultured liners (substrate intact) of mountain laurel, 1-year-old rooted cutting liners (substrate intact) of `Compacta' holly (liner holly), 6-inch bare root seedling liners of sourwood, and 3-month-old bare-root rooted cuttings of `Compacta' holly were potted in containers in Turface™. Prior to potting, roots of all plants were dyed with a solution of 0.5% (w/v) methylene blue. Plants were greenhouse-grown. Destructive harvests were conducted every 2 to 3 weeks (six total harvests). Length, area, and dry weight of roots produced since the start of the experiment, leaf area, and dry weight of shoots were measured. Sourwood and liner holly had greater rate of increase in root length and root dry weight than mountain laurel and bare root holly. Rate of increase in root area was greatest for sourwood, followed by (in decreasing order) liner holly, mountain laurel, and bare-root holly. Increase in root length and root area per increase in leaf area was highest for liner holly, possibly indicating why this species routinely establishes successfully in the landscape. Increase in root dry weight per increase in shoot dry weight was lowest for mountain laurel. The slow rate of root growth of mountain laurel (compared to sourwood and liner holly) may suggest why this species often does not survive transplanting.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1080g-1080
Author(s):  
Chris A. Martin ◽  
Dewayne L. Ingram

Root growth of Magnolia grandiflora Hort. `St. Mary' was studied for 16 wk after an 8-wk exposure period to 30°, 34°, 38°, or 42°±0.8°C root-zone temperature (RZT) treatments applied 6 hr daily, Immediately after the RZT treatment period, total root length was similar for trees exposed to 30°, 34°, and 38°C and was reduced 45% at 42° compared to 38°C. For weeks eight and 18 of the post-treatment period, response of total root length to RZT was linear. Total root length of trees exposed to 28°C was 247% and 225% greater than those exposed to 42°C RZT at week eight and 16, respectively. Root dry weight from the 42°C RZT treatment was 29% and 48% less than 38° and 34°C RZT treatment, respectively, at week eight. By week 16, root dry weight as a function of RZT had changed such that the 42°C RZT was 43% and 47% less than 38° and 34°C RZT, respectively. Differences in root growth patterns between weeks eight and 16 suggest that trees were able to overcome the detrimental effects of the 38°C treatment whereas growth suppression by the 42°C treatment was still evident after 16 wk. Previous exposure of tree roots to supraoptimal RZT regimens may have long-term implications for suppressing growth and lengthening the establishment period of trees in the landscape,


HortScience ◽  
1991 ◽  
Vol 26 (4) ◽  
pp. 370-371 ◽  
Author(s):  
Chris A. Martin ◽  
Dewayne L. Ingram

Root growth of southern magnolia (Magnolia grandiflora Hort. `St. Mary') was studied for 16 weeks after an 8-week exposure to 30, 34, 38, or 42 ± 0.8C root-zone temperature (RZT) treatments applied for 6 hours daily. Immediately after RZT treatments, total root length of trees responded negatively to increased RZT in a quadratic pattern and the shoot and root dry weight of trees was similar. However, 8 and 16 weeks after RZT treatments, total root length responded linearly in a negative pattern to increased RZT, and shoot and root dry weight responded negatively to increased RZT in a linear and quadratic pattern, respectively. Root dry weight of trees exposed to 42C RZT treatment was 29% and 48% less than 38 and 34C RZT treatments, respectively, at week 8. By week 16, root dry weight as a function of RZT had changed such that the 42C RZT was 43% and 47% less than 38 and 34C RZT, respectively. Differences in root growth patterns between weeks 8 and 16 suggest that trees were able to overcome the detrimental effects of the 38C treatment, whereas growth suppression by the 42C treatment was still evident after 16 weeks.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12015
Author(s):  
Xinyu Chen ◽  
Yu Zhu ◽  
Yuan Ding ◽  
Rumo Pan ◽  
Wenyuan Shen ◽  
...  

Drought is a common yield limiting factor in wheat production and has become a significant threat to global food security. Root system is the organ responsible for water uptake from soil and root growth is closely associated with yield and quality of wheat. However, the relationship between morphological and structural characteristics of root growth and caryopsis enrichment in wheat under drought stress is unclear. In this study, two wheat cultivars (YM13 and YN19) were treated with drought from flowering to caryopsis maturity stage. The changes in morphological structure of roots and characteristics of endosperm enrichment were investigated. Drought stress significantly reduced the root length, plant height, root dry weight and aboveground parts dry weight, whereas the root-shoot ratio of YM13 and YN19 increased by 17.65% and 8.33% under drought stress, respectively. The spike length, spike weight, grains number per spike and 1,000-grains weight of mature wheat also significantly declined under drought stress. Meanwhile, the cross section structure of roots was changed with the enlargement of vascular cylinder and dense distribution of xylem vessels under drought stress. Additionally, drought stress affected the substance enrichment in wheat caryopses, decreasing starch accumulation and increasing protein accumulation of endosperm. Correlation analysis suggested that the root length was closely correlated with the relative areas of amyloplast (0.51) and protein body (0.70), and drought stress increased the correlation coefficient (0.79 and 0.78, respectively). While the root dry weight had a significantly positive correlation with the plant height and aboveground parts dry weight. The results can provide theoretical basis for root architecture optimization, water-saving and high-yield cultivation and quality improvement in wheat.


Author(s):  
Zh. Rakhymzhan ◽  
Zh.B. Tekebayeva ◽  
R.R. Beysenova ◽  
A.D. Rakhisheva

For the purpose of study the relationship between the characteristics of the root system, activity and saline pressure of Aksora (Suaeda salsa Pall.) various concentrations of NaCl (0, 200, 400 and 600 mmol/L) were prepared. The effect of salt concentration on the biomass of Aksora (Suaeda salsa Pall.) root and the activity of the root system was studied. The results showed that as the NaCl concentration increased, the dry and fresh weight of the Aksora (Suaeda salsa Pall.) roots, the total length and surface area of the root increased and then gradually decreased. The highest values of dry weight, fresh weight and total length of the vascular system were observed at a concentration of 200 mmol / L NaCl, while at a concentration of 600 mmol/L NaCl, the dry weight, wet weight and total root length, and surface area signifi cantly decreased. These results indicate that refi nement of Aksora with higher concentrations of NaCl salt can increase the total length and absorption area of roots, thereby promoting root growth and adaptability to saline pressure. However, it has been found that with extrmely high salt concentrations inhibit root growth by reducing the total root length and absorption area. Key words: Aksora, vascular activity, NaCl, absorption zone.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 271D-271
Author(s):  
Sven E. Svenson ◽  
Timothy K. Broschat

The influence of copper hydroxide [Cu(OH)2] application to interior container surfaces on root growth at the container-medium interface was studied using Carpentaria palm [Carpentaria acuminata (H. Wendl. & Drude) Becc.]. Cu(OH)2 (0, 100, 200, or 400 g) was mixed with one liter of either white latex house paint, or NuFilm-17 surfactant, and applied to all surfaces inside 0.5 liter containers. Plants were grown in untreated containers, in containers treated with paint or NuFilm-17 only, or in containers treated with Cu(OH)2 in paint (100 g rate only) or NuFilm-17 (100, 200 or 400 g per liter). When applied in paint or NuFilm-17, Cu(OH)2 reduced root growth at the container-medium interface, controlling the circular growth pattern commonly observed in container-grown plants. Controlling circling root growth at the soil-container interface did not influence shoot or root dry weight, but did reduce total root length. Application of Cu(OH)2 with paint was unsightly, while application with NuFilm-17 was almost unnoticeable.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1080G-1080
Author(s):  
Chris A. Martin ◽  
Dewayne L. Ingram

Root growth of Magnolia grandiflora Hort. `St. Mary' was studied for 16 wk after an 8-wk exposure period to 30°, 34°, 38°, or 42°±0.8°C root-zone temperature (RZT) treatments applied 6 hr daily, Immediately after the RZT treatment period, total root length was similar for trees exposed to 30°, 34°, and 38°C and was reduced 45% at 42° compared to 38°C. For weeks eight and 18 of the post-treatment period, response of total root length to RZT was linear. Total root length of trees exposed to 28°C was 247% and 225% greater than those exposed to 42°C RZT at week eight and 16, respectively. Root dry weight from the 42°C RZT treatment was 29% and 48% less than 38° and 34°C RZT treatment, respectively, at week eight. By week 16, root dry weight as a function of RZT had changed such that the 42°C RZT was 43% and 47% less than 38° and 34°C RZT, respectively. Differences in root growth patterns between weeks eight and 16 suggest that trees were able to overcome the detrimental effects of the 38°C treatment whereas growth suppression by the 42°C treatment was still evident after 16 wk. Previous exposure of tree roots to supraoptimal RZT regimens may have long-term implications for suppressing growth and lengthening the establishment period of trees in the landscape,


Sign in / Sign up

Export Citation Format

Share Document