scholarly journals Root and Shoot Characteristics of Peach Trees with Different Growth Habits

2001 ◽  
Vol 126 (6) ◽  
pp. 785-790 ◽  
Author(s):  
Thomas Tworkoski ◽  
Ralph Scorza

Shoot and root characteristics of four peach tree [Prunus persica (L.) Batsch (Peach Group)] growth habits (compact, dwarf, pillar, and standard) were studied. In compact trees, leaf number (1350/tree) was twice, but leaf area (6 cm2/leaf) was half that of pillar and standard trees. The number of lateral branches in compact trees (34) was nearly three times more than in pillar and standard trees. Leaf area index (total one-side leaf area per tree divided by the canopy cross-sectional area of the tree) of pillar trees was greater than compact, dwarf, and standard trees (13 compared with 4, 4, and 3, respectively) due to a narrower crown diameter. Dwarf trees were distinct with few leaves (134/tree) and less than half the roots of the other growth habits. Compact trees produced more higher order lateral (HOL) roots than pillar and standard trees. More second order lateral (SOL) roots were produced by compact than standard trees (1.2 vs. 0.8 SOL roots per centimeter first order lateral root). Pillar trees had higher shoot: root dry weight (DW) ratios (2.4) than compact and standard trees (1.7 for both) due to lower root DWs. Root topology was similar among compact, pillar, and standard peach trees but root axes between branch junctions (links) were significantly longer in compact trees. Compact trees had more and longer HOL roots in roots originating near the root collar (stem-root junction) (i.e., more fibrous roots) and this appeared to correlate with more lateral branches in the canopy. These results indicate significant differences in root as well as shoot architecture among growth habits that can affect their use as scion or rootstock cultivars.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 419C-419
Author(s):  
T.J. Tworkoski ◽  
R. Scorza

Peach trees (Prunus persica L.) with diverse shoot growth habits have been developed, but little is known about their root systems. Characterizing shoot and root systems can improve basic understanding of peach tree growth and be important in the development of rootstocks and own-rooted trees. This research determined shoot and root characteristics of four peach tree growth habits (compact, dwarf, pillar, and standard). Seed from four peach growth habits were planted in 128-L containers, grown outside during the 1998 growing season, and then harvested. Compact tree leaf number (1350/tree) was twice, but leaf area (6 cm2/leaf) was half, that of pillar and standard trees. The number of lateral branches in compact trees (34) was nearly three-times more than in pillar and standard trees. The leaf area index (LAI) of pillar trees was greater than compact and standard trees (13 compared with 4 and 3, respectively) due to a narrower crown diameter. Dwarf tree shoots were distinct with few leaves (134 per tree) and a large LAI of 76. Compact trees grew more higher-order lateral roots than pillar and standard trees. More second-order lateral (SOL) roots were produced by compact than standard trees (1.2 vs. 0.8 SOL roots/cm first-order lateral root). Pillar trees had higher shoot-to-root dry weight ratios (2.4) than compact and standard trees (1.7 for both) due to smaller root dry weights. The results indicate fundamental differences in root characteristics among the peach tree growth habits. Compact trees had more higher order lateral roots in roots originating near the root collar (i.e., more fibrous roots), and this correlated with more lateral branches in the canopy. Shoot weights were the same among pillar, compact, and standard trees but root weights were less in pillar trees, resulting in greater shoot-to-root dry weight ratios. These results indicate significant differences in root as well as shoot architecture among growth habits that can affect their use as scion or rootstock varieties.


2012 ◽  
Vol 10 (1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Z. U. Kamal ◽  
M. N. Yousuf

The investigation was carried out to evaluate the effect of different organic manures on turmeric with reference to vegetative growth, biomass production, rhizome yield and its attributes of turmeric (Curcuma longa L.). Turmeric showed better response to the application of organic manures. Plant with neem cake application had the taller plant (79.30 cm), maximum number of tillers per plant (5.40), leaf number (5.40), leaf area (44.09) leaf area index (0.429), fresh weight of halum ( 190.05g), fresh weight of root (49.13 g), fresh weight of rhizome per plant (256.21 g) and dry weight of halum (15.21g), dry weight of root (7.32 g), dry weight of rhizome per plant (40.35 g), total dry matter yield (6.85 t ha-1) than those received other types of manures. Moreover, yield attributes such as number of mother rhizomes per plant-1 (1.75), more number of primary rhizomes per plant-1 (5.19), secondary rhizomes per plant-1 (18.03) and tertiary rhizomes per plant (7.69) were also highly accelerated by neem cake application. Similarly, the same treatment expressed the best in terms of size of mother rhizome (7.69 cm), primary rhizome (21.86 cm) and secondary rhizomes (7.05 cm).All these parameters in cumulative contributed to  produce the highest estimated fresh rhizomes yield & cured rhizomes yield (29.48 t ha-1, 5.59 t ha-1 respectively). The highest curing percentage (20.28) was observed in T3 treatment having mustard cake@ 2.0 t/ha. Thus, organic manure like neem cake was best fitted natural fertilizer for turmeric cultivation.DOI: http://dx.doi.org/10.3329/agric.v10i1.11060The Agriculturists 2012; 10(1): 16-22


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


2021 ◽  
Vol 25 (8) ◽  
pp. 1513-1518
Author(s):  
A.S. Gunu ◽  
M. Musa

Field trial was carried out during the 2019 rainy season (June to October) at the Dryland Teaching and Research Farm of the Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto to determine the growth and yield of sorghum varieties in the study area. The treatments consisted of five (5) sorghum varieties (Samsorg 45, Samsorg 46, Janjari, Yartawa and Jardawa), the treatments were laid out in a Randomized Complete Block Design (RCBD) replicated three (3) times. Data were collected on the growth and yield of the crop. Janjari and Jardawa varieties were higher in plant height. Jardawa and Yartawa varieties were higher in number of leaves. Janjari and Yartawa varieties were higher in total dry weight. Janjari, Jardawa and Yartawa varieties were higher in harvest index. Yartawa variety was higher in leaf area, leaf area index and 1000-grain weight. Jardawa variety was higher in panicle length. Janjari variety was early in number of days to heading, flowering, and maturity and was higher in dry stalk weight. The grain yield (249 – 1506kg ha-1 ) was higher in Janjari and Yartawa varieties (1268 – 1506 kg ha-1). Based on the findings of this research, it could be concluded that Janjari and Yartawa varieties performed better than other varieties in the study area.


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


1958 ◽  
Vol 51 (3) ◽  
pp. 347-352 ◽  
Author(s):  
R. H. M. Langer

1. Swards of S. 48 timothy and S. 215 meadow fescue growing alone or together were sampled at intervals of 3 weeks throughout the season. The number and weight of leaves, stems and ears were determined, and leaf area was estimated.2. Despite high rainfall, the total number of tillers in both species declined from the beginning of the experiment until early July, but increased again from then onwards until the original complement had been approximately restored. The number of leaves failed to show a corresponding increase in the autumn because each tiller carried fewer leaves than earlier in the year.3. In the spring total dry weight increased more rapidly in meadow fescue than in timothy which in turn out-yielded meadow fescue later in the season. Both species attained their greatest dry weight soon after ear emergence, a period which was marked by considerable crop growth and relative growth rates.4. Leaf area index reached a maximum before total dry weight had increased to its highest level, but then declined in both species. Meadow fescue differed from timothy by producing a second crop of foliage after the summer with a leaf area index of about 7. This second rise appeared to be due mainly to increased leaf size in contrast to timothy whose leaves became progressively smaller towards the end of the season.5. The differences in growth between the species discussed with reference to their dates of ear emergence which in this experiment differed by about 6 weeks.


2021 ◽  
Vol 30 (2) ◽  
pp. 159-168
Author(s):  
Shabnur Chowdhury ◽  
MK Rahman

Effects of organic manures on growth and yield of lettuce (Lactuca sativa L.) and nutrient accumulation in its leaves was examined. The experiment was conducted in a completely randomized design (CRD) replicated thrice with ten treatments involving nine organic manures and a control treatment. Growth parameters viz. plant height, leaf number, leaf length, leaf area, leaf area index and fresh and dry weight of leaf, stem and root were assessed. The highest height (23.69 cm), longest leaf (32.18cm), leaf area (5883.43cm2), leaf area index (6.434), fresh weight (85.41 g) and dry weight (42.73 g) were found in Payel organic manure. The maximum leaf number (27) was recorded in Approshika organic manure. The maximum content of nitrogen (6.12%), phosphorus (1.83%), potassium (4.11%) and Sulphur (1.69%) were observed in Payel organic manure. The best growth performance and nutrient accumulation was observed in Payel organic manure. Dhaka Univ. J. Biol. Sci. 30(2): 159-168, 2021 (July)


1977 ◽  
Vol 28 (3) ◽  
pp. 441 ◽  
Author(s):  
PR Smith ◽  
TF Neales

The vegetative growth of young peach trees was reduced greatly in the growing season following a dual infection with Prunus necrotic ringspot and prune dwarf viruses which caused the disease known as 'peach rosette and decline'. Ninety-two days after bud burst, the dry weight and leaf area of cv. Elberta scions were reduced by c. 60% as a result of infection, while the reduction in cv. Golden Queen was about 93%. The latter cultivar thus appears to be the less tolerant of infection by this virus disease.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Ronald C. Cordes ◽  
Thomas T. Bauman

Detrimental effects on growth and yield of soybeans [Glycine max(L.) Merr. ‘Amsoy 77′] from density and duration of competition by ivyleaf morningglory [Ipomea hederacea(L.) Jacq. ♯3IPOHE] was evaluated in 1981 and 1982 near West Lafayette, IN. Ivyleaf morningglory was planted at densities of 1 plant per 90, 60, 30, and 15 cm of row in 1981 and 1 plant per 60, 30, 15, and 7.5 cm of row in 1982. Each density of ivyleaf morningglory competed for 22 to 46 days after emergence and the full season in 1981, and for 29 to 60 days after emergence and the full season in 1982. The best indicators of competition effects were leaf area index, plant dry weight, and yield of soybeans. Ivyleaf morningglory was more competitive during the reproductive stage of soybean growth. Photosynthetic irradiance and soil moisture measurements indicated that ivyleaf morningglory does not effectively compete for light or soil moisture. All densities of ivyleaf morningglory could compete with soybeans for 46 and 60 days after emergence in 1981 and 1982, respectively, without reducing soybean yield. Full-season competition from densities of 1 ivyleaf morningglory plant per 15 cm of row significantly reduced soybean yield by 36% in 1981 and 13% in 1982. The magnitude of soybean growth and yield reduction caused by a given density of ivyleaf morningglory was greater when warm, early season temperatures favored rapid weed development.


1981 ◽  
Vol 11 ◽  
pp. 207-220 ◽  
Author(s):  
Thomas W. Brakke ◽  
Edward T. Kanemasu ◽  
Jean L. Steiner ◽  
Fawwaz T. Ulaby ◽  
Ed Wilson

Sign in / Sign up

Export Citation Format

Share Document