scholarly journals Marker-assisted Selection for Combining Resistance to Bacterial Spot and Bacterial Speck in Tomato

2005 ◽  
Vol 130 (5) ◽  
pp. 716-721 ◽  
Author(s):  
Wencai Yang ◽  
David M. Francis

The lack of resistance to bacterial diseases increases both the financial cost and environmental impact of tomato (Lycopersicon esculentum Mill.) production while reducing yield and quality. Because several bacterial diseases can be present in the same field, developing varieties with resistance to multiple diseases is a desirable goal. Bacterial spot (caused by four Xanthomonas Dowson species) and bacterial speck (caused by Pseudomonas syringae pv. tomato Young, Dye and Wilkie) are two economically important diseases of tomato with a worldwide distribution. The resistance gene Pto confers a hypersensitive response (HR) to race 0 strains of the bacterial speck pathogen. The locus Rx3 explains up to 41% of the variation for resistance to bacterial spot race T1 in field trials, and is associated with HR following infiltration. Both Pto and Rx3 are linked in repulsion phase on chromosome 5. We made a cross between two elite breeding lines, Ohio 981205 carrying Pto and Ohio 9834 carrying Rx3, to develop an F2 population and subsequent inbred generations. Marker-assisted selection (MAS) was applied to the F2 progeny and to F2:3 families in order to select for coupling-phase resistance. Thirteen homozygous progeny from 419 F2 plants and 20 homozygous families from 3716 F3 plants were obtained. Resistance was confirmed in all selected families based on HR in greenhouse screens using bacterial speck race 0 and bacterial spot race T1 isolates. Resistance to bacterial spot race T1 was confirmed in the field for 33 of the selected families. All selected families were also resistant to bacterial speck in the field. MAS was an efficient tool to select for desirable recombination events and pyramid resistance.

Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 481-488 ◽  
Author(s):  
F. J. Louws ◽  
M. Wilson ◽  
H. L. Campbell ◽  
D. A. Cuppels ◽  
J. B. Jones ◽  
...  

Acibenzolar-S-methyl (CGA 245704 or Actigard 50WG) is a plant activator that induces systemic acquired resistance (SAR) in many different crops to a number of pathogens. Acibenzolar-S-methyl was evaluated for management of bacterial spot (Xanthomonas axonopodis pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. tomato) of tomato in 15 and 7 field experiments, respectively. Experiments were conducted over a 4-year period in Florida, Alabama, North Carolina, Ohio, and Ontario using local production systems. Applied at 35 g a.i. ha-1, acibenzolar-S-methyl reduced foliar disease severity in 14 of the 15 bacterial spot and all 7 bacterial speck experiments. Disease control was similar or superior to that obtained using a standard copper bactericide program. Acibenzolar-S-methyl also reduced bacterial fruit spot and speck incidence. Tomato yield was not affected by using the plant activator in the field when complemented with fungicides to manage foliar fungal diseases, but tomato transplant dry weight was negatively impacted. X. axonopodis pv. vesicatoria population densities on greenhouse-grown tomato transplants were reduced by acibenzolar-S-methyl treatment. Bacterial speck and spot population densities on leaves of field-grown plants were not dramatically affected. Acibenzolar-S-methyl can be integrated as a viable alternative to copper-based bactericides for field management of bacterial spot and speck, particularly where copper-resistant populations predominate.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Diane A. Cuppels ◽  
Frank J. Louws ◽  
Teresa Ainsworth

Bacterial speck and bacterial spot lesions can easily be confused with each other and with those formed by other tomato pathogens. To facilitate disease diagnosis, we developed and evaluated polymerase chain reaction (PCR)-based lesion assays using crude DNA extracts and primer sets COR1/2 (bacterial speck) and BSX1/2 (bacterial spot). All 29 pathogenic Pseudomonas syringae pv. tomato strains tested produced a 689-bp amplicon with COR1/2; 28 of the 37 geographically diverse bacterial spot-causing xanthomonad (BSX) strains that were tested generated the 579-bp BSX1/2 amplicon. The detection limit with plant samples was 30 to 50 CFU/reaction. In a 6-year study, the COR1/2 PCR assay diverged from the culture-based classical assay for only 3 of 70 bacterial speck lesion samples collected from Ontario greenhouses and tomato fields; the BSX1/2 assay was positive for 112 of the 124 confirmed bacterial spot lesions sampled. The majority (66%) of the BSX strains isolated from these lesions belonged to group D; the 12 strains that were BSX1/2-negative belonged to group C. Group D strains produced a 425-bp PCR product with crude DNA extracts but a 579-bp product with purified DNA; the former was identical to the latter except that it was missing 150 bp from the middle of the 579-bp sequence.


Genetika ◽  
2017 ◽  
Vol 49 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Daniela Ganeva ◽  
Nevena Bogatzevska

Tomato breeding lines with fruit colour different from the traditional red colour were studied in order to search for sources of resistance to races R0 and R1 of Pseudomonas syringae pv. tomato. As a result of selection of healthy plants with hypersensitive response (HR), the resistance was stabilized and perspective lines gene-carriers of resistance to bacterial speck were chosen. Lines L1078 and L1083 with brown-red (black) coloured fruits and line L1130 with purple-red fruits possess a complex resistance to races R0 and R1. It was established that two of the lines with rose-coloured tomato fruits (L1088 and L584) were resistant to race 1 of P. syringae pv. tomato. These lines possessed valuable economic and morphological characters and they could be used in combinative and heterosis breeding for development of resistance to bacterial speck varieties.


2005 ◽  
Vol 58 ◽  
pp. 101-105 ◽  
Author(s):  
J.L Vanneste ◽  
G.E McLaren ◽  
J. Yu ◽  
D.A. Conzish ◽  
R. Boyd

Stone fruit orchards in New Zealand are sprayed with copperbased compounds and streptomycin to control bacterial diseases such as bacterial blast (Pseudomonas syringae pv syringae) and bacterial spot (Xanthomonas arboricola pv pruni) About 50 of the bacteria isolated from nectarines from the orchard at Clyde Research Centre Central Otago in September 2003 were found to be resistant to copper The percentage of strains of P syringae pv syringae isolated in 2004 from nectarines from the same orchard that were resistant to 500 mg/litre of copper was 58 This percentage rose to 92 seven days after treating the trees with copper In 35 of the 48 samples from commercial stone fruit orchards tested more than half of the bacteria isolated were resistant to 500 mg/litre of copper Only five strains of Xanthomonas sp out of the 306 strains tested were resistant to copper; none were resistant to streptomycin


2021 ◽  
Author(s):  
Heba Mahfouze ◽  
Sherin Mahfouze

Abstract The tomato crop is exposed to serious losses due to infection with several diseases and pests, which threaten tomato production in Egypt and worldwide. Therefore, selecting the tomato germplasm resistant or tolerant to a specific pathogen by molecular markers closely linked to resistance loci is a desirable goal of this study. In this work, seven co-dominant markers targeting six resistance genes (I-1, Ve, Ph3, Cf-9/Cf-4, Rx4, and Pto) for six main diseases [ fusarium wilt (Fusarium oxysporum f. sp. lycopersici), verticillium wilt (Verticillium dahliae and V. alboatrum), late blight (Phytophthora infestans), leaf mold (Cladosporium fulvum), bacterial spot (Xanthomonas campestris pv. vesicatoria) and bacterial speck (Pseudomonas syringae pv. tomato)], respectively were determined. Theses molecular markers differentiated among 19 tomato genotypes resistant (homozygote/heterozygote) and susceptible (homozygote) to the pathogens. Therefore, this study supplied us with novel tomato lines with resistance to multiple diseases, and their pyramiding inside domesticated tomato cultivars are suggested to apply in the tomato breeding programs of resistance against fungal and bacterial diseases.


Sign in / Sign up

Export Citation Format

Share Document