scholarly journals Genetic and Environmental Effects on Water Use Efficiency in Peach

2006 ◽  
Vol 131 (2) ◽  
pp. 290-294 ◽  
Author(s):  
D. Michael Glenn ◽  
R. Scorza ◽  
W.R. Okie

Two unpruned narrow-leaf and two unpruned standard-leaf peach [Prunus persica (L.) Batsch.] selections were evaluated for physiological components related to water use efficiency {WUE [carbon assimilation (A) per unit of transpiration (T)]}. The purpose of the study was to assess the value of narrow-leaf phenotypes to improve WUE in peach and separate the environmental component of canopy geometry from the genetic components. The narrow-leaf characteristic itself did not confer improved WUE. The interception of light was a key determinant of WUE in these genotypes. Internal shading of the tree by excessive leaf area reduced daily WUE measured in gas exchange studies. Canopies that intercepted more than 75% of the photosynthetically active radiation (PAR) had reduced daily WUE. Dormant season pruning of the four genotypes lowered isotopic carbon discrimination and therefore increased seasonal WUE compared to unpruned trees. None of the genotypes had a significant correlation of seasonal WUE with leaf and fruit weight. Analysis of covariance indicated that `Bounty' and both narrow-leaf genotypes had greater leaf and fruit weight than `Redhaven' for a given level of PAR interception. `Bounty' had the least internal canopy shading of the four genotypes. Genetic differences in peach growth types can be selected for factors increasing WUE as well as increased productivity. Future work in peach breeding to improve WUE and productivity must take into consideration light interception, productivity, and WUE in an integrated manner to make real progress in the efficient use of water and light in the orchard environment.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1017B-1017
Author(s):  
D. Michael Glenn ◽  
Ralph Scorza ◽  
William R. Okie

Two unpruned willow leaf and two unpruned standard leaf peach [Prunuspersica(L.) Batsch.] selections were evaluated for physiological components related to water use efficiency (WUE). The purpose of the study was to assess the value of willow leaf phenotypes to improve water use efficiency in peach and separate the environmental from the genetic components. The willow leaf characteristic itself did not confer improved water use efficiency. Light interception was a key determinant of WUE in these genotypes and the relationship of WUE with intercepted photosynthetically active radiation (PAR) by the entire canopy indicated a significant negative correlation. Internal shading of the tree by excessive leaf area reduced WUE and canopies that intercept more than 60% of the PAR have reduced WUE. While WUE is improved by reducing the amount of PAR interception of the canopy, productivity is reduced. Neither of the willow leaf genotypes had a significant correlation of WUE with yield (leaf and fruit weight); however, the standard leaf type cultivars, `Bounty' and `Redhaven', had significantly different regressions that indicate greater productivity in `Bounty' for a given level of WUE. `Redhaven' was the least productive cultivar; `Bounty' was the most productive, and the two willow leaf genotypes were intermediate in the relationship of intercepted PAR with yield. Therefore, genetic differences in peach growth types can be selected for both increased WUE as well as increased productivity. Future work in peach breeding to improve WUE and productivity must take into consideration light interception, productivity, and WUE in an integrated manner to make progress in the efficient use of water and light.


2003 ◽  
Vol 128 (3) ◽  
pp. 356-362 ◽  
Author(s):  
D. Michael Glenn ◽  
Amnon Erez ◽  
Gary J. Puterka ◽  
Patricia Gundrum

Processed-kaolin particle films (PKPFs) are used commercially in large quantities on horticultural crops to repel insects, and reduce heat stress and solar injury of fruit. Our studies determined the effect of two processed-mineral particle film materials (kaolin and calcium carbonate), on whole plant carbon assimilation, water use efficiency, yield, mean fruit weight and quality in `Empire' apple [(Malus ×sylvestris (L.) Mill var. domestica (Borkh Mansf.))] over a four-year period. The application of a PKPF reduced canopy temperature, and probably reduced environmental stress, resulting in increased mean fruit weight and red color in two of the four years of the study. Whole canopy carbon assimilation studies indicated increased carbon assimilation only under conditions of high air temperature. The PKPF sprayed leaves also had reduced water use efficiency; likely due to increased stomatal conductance associated with reduced leaf temperature. Calcium carbonate had none of the positive effects of PKPF and reflected more photosynthetically active radiation (PAR) than the PKPF.


2019 ◽  
Vol 16 (13) ◽  
pp. 2557-2572 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency (WUE), defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water limitation. Here, we used dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies WUE at ecosystem scale. WUE models were evaluated by their performance to predict ET from both the gross primary productivity (GPP), which characterizes carbon assimilation at ecosystem scale, and environmental variables. We first compared two water-use efficiency models: the first was based on the concept of a constant underlying water-use efficiency, and the second augmented the first with a previously detected direct influence of radiation on transpiration. Both models predicting ET strictly from atmospheric covariates failed to reproduce observed ET dynamics for these periods, as they did not explicitly account for the effect of soil-water limitation. We demonstrate that an ET-attenuating soil-water-availability factor in junction with the additional radiation term was necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation of ET for the 31 included FLUXNET sites, up to 50 % of the observed decline in ET was due to the soil-water-availability effect we identified in this study. We conclude by noting that the rates of ET decline differ significantly between sites with different vegetation and climate types and discuss the dependency of this rate on the variability of seasonal dryness.


Author(s):  
Mohammad Mehdi Arab ◽  
Annarita Marrano ◽  
Rostam Abdollahi-Arpanahi ◽  
Charles A Leslie ◽  
Hao Cheng ◽  
...  

Abstract Walnut production is challenged by climate change and abiotic stresses. Elucidating the genomic basis of adaptation to climate is essential to breeding drought tolerant cultivars for enhanced productivity in arid and semi-arid regions. Here, we aimed to identify loci potentially involved in water use efficiency (WUE) and adaptation to drought in Persian walnut using a diverse panel of 95 walnut families (950 seedlings) from Iran, which show contrasting levels of water availability in their native habitats. We analyzed associations between phenotypic, genotypic, and environmental variables from datasets of 609 K high-quality single-nucleotide polymorphisms (SNPs), three categories of phenotypic traits (WUE related traits under drought, their drought stress index and principal components), and 21 climate variables and combination of them (first three PCs). Our genotype-phenotype analysis identified 22 significant and 266 suggestive associations, some of which were identified for multiple traits, suggesting their correlation and a possible common genetic control. Also, genotype-environment association analysis found 115 significant and 265 suggestive SNP loci that displayed potential signals of local adaptation. Several sets of stress-responsive genes were found in the genomic regions significantly associated with the aforementioned traits. Most of the candidate genes identified are involved in abscisic acid signaling, stomatal regulation, transduction of environmental signals, antioxidant defense system, osmotic adjustment, and leaf growth and development. Upon validation, the marker-trait associations identified for drought tolerance-related traits would allow the selection and development of new walnut rootstocks or scion cultivars with superior water use efficiency.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Carlos Suárez ◽  
Milan O. Urban ◽  
Amara Tatiana Contreras ◽  
Jhon Eduar Noriega ◽  
Chetan Deva ◽  
...  

In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes.


2007 ◽  
Vol 34 (10) ◽  
pp. 918 ◽  
Author(s):  
Gregory J. Jordan ◽  
Timothy J. Brodribb

This paper examines physiological characteristics of the leaves of Agastachys odorata R.Br., a wet-climate sclerophyllous shrub with very long-lived leaves. It addresses the hypothesis that cuticles become leakier to water vapour as leaves age. Astomatous cuticular conductance, whole-leaf minimum epidermal conductance, leaf damage and accumulation of epiphylls all increased several-fold with leaf age from first year growth to 10 years of age. Maximum carbon assimilation peaked 1 year after full leaf expansion, then declined. Intrinsic water use efficiency was highest in mid-aged leaves and declined markedly in the oldest leaves. Stomatal density, stomatal size and cuticle thickness did not vary significantly among ages. The older leaves were less effective at controlling water loss, resulting in decreases in water use efficiency. A differential increase in the conductance of the stomatal surface of the leaves relative to astomatous surface suggested that stomatal leakiness was significant in leaves over five years old. Although data for other species is ambiguous, the deterioration in A. odorata appears to be consistent with changes in the oldest leaves of other species. Thus, decreasing ability to use water efficiently appears to be a consequence of accumulated damage and may contribute to the need for leaf senescence in evergreen species with little self shading.


2003 ◽  
Vol 60 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Fátima Conceição Rezende ◽  
José Antonio Frizzone ◽  
Ricardo Ferraz de Oliveira ◽  
Anderson Soares Pereira

Greenhouse production of vegetables is widely used throughout the world. Elevated carbon dioxide (CO2) concentrations in these closed environments can increase net photosynthesis and yield. The objective of this study was to determine the effects of atmospheric CO2 enrichment and water supply on the growth of potted bell pepper (Capsicum annuum L.) plants, cultivated under controlled environmental conditions. CO2 was applied daily, and its distribution was monitored above plant rows through micro pipes located at 3.0 m height. A drip irrigation system with one dripper per plant was used to irrigate the plants. Different volumes of irrigation water, representing fractions of the water volume (Vet) consumed by pot plants growing under no water stress conditions (0.5Vet, 0.65Vet, 1.0Vet, and 1.35Vet) with four replications, were evaluated under four different CO2 levels (atmospheric concentration of 367, 600, 800, and 1000 mumol mol-1). Total fresh fruit mass, average number of fruits, and water use efficiency were recorded. For the water deficit treatments, the greatest fresh fruit mass was obtained for the highest CO2 level environment. However, for treatments that received water volumes equal or greater than the evapotranspiration rate, the greatest total fresh fruit mass was observed at the 600 mumol mol-1 of CO2 environment. The yield increase due to CO2 was represented by increase in fruit weight and not in fruit number. Water use efficiency increased in relation to the amount of water applied and it was highest at 600 mumol mol-1 CO2 concentration.


Sign in / Sign up

Export Citation Format

Share Document