scholarly journals Orange Tree Fibrous Root Length Distribution in Space and Time

2007 ◽  
Vol 132 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Kelly T. Morgan ◽  
T.A. Obreza ◽  
J.M.S. Scholberg

Understanding the growth pattern of fibrous, orange tree [Citrus sinensis (L.) Osbeck] roots enables proper fertilizer placement to improve nutrient uptake efficiency and to reduce nutrient leaching below the root zone. The objective of this study was to develop relationships defining citrus fibrous root length density (FRLD) as a function of soil depth, distance from the tree trunk, and tree size. Root systems of 18 trees with tree canopy volumes (TCV) ranging from 2.4 to 34.3 m3 on two different rootstocks and growing in well-drained sandy soils were sampled in a systematic pattern extending 2 m away from the trunk and 0.9 m deep. Trees grown on Swingle citrumelo [Citrus paradisi Macf. × Poncirus trjfoliata (L.) Raf.] rootstock had significantly greater FRLD in the top 0.15 m than trees on Carrizo citrange (C. sinensis × P. trifoliata). Conversely, Carrizo citrange had greater FRLD from 0.15 to 0.75 m below the soil surface. FRLD was significantly greater for ‘Hamlin’ orange trees grown on Swingle citrumelo rootstock at distances less than 0.75 m from the tree trunk compared with those on Carrizo citrange. Fibrous roots of young citrus trees developed a dense root mat above soil depths of 0.3 m that expanded both radially and with depth with time as trees grow and TCV increased. Functional relationships developed in this study accounted for changes in FRLD with increase in tree size.

Hilgardia ◽  
1954 ◽  
Vol 22 (16) ◽  
pp. 583-591 ◽  
Author(s):  
Henry Schneider
Keyword(s):  

2009 ◽  
Vol 55 (No. 11) ◽  
pp. 502-510 ◽  
Author(s):  
P. Jaloviar ◽  
L. Bakošová ◽  
S. Kucbel ◽  
J. Vencurik

The fine root biomass represents 3,372 kg/ha in the intermediate stage of the beech virgin forest with different admixture of goat willow, where the vast majority of this biomass is located in the uppermost mineral soil layer 0–10 cm. The variability of the fine root biomass calculated from 35 sample points represents approximately 90% of the mean value and reaches the highest value within the humus layer. The total fine root length investigated in 10 cm thick soil layers decreases with increasing soil depth. A significant linear relationship between the fine root length (calculated per 1 cm thick soil layer and 1 m<sup>2</sup> of stand area) and the soil depth was confirmed, although the correlation is rather weak. The number of root tips decreases with increasing soil depth faster than the root length. As the number of tips per 1 cm of root length remains in the finest diameter class without significant changes, the reason is above all a decreased proportion of the finest root class (diameter up to 0.5 mm) from the total fine root length within the particular soil layer.


2015 ◽  
Vol 400 (1-2) ◽  
pp. 315-335 ◽  
Author(s):  
Félix Brédoire ◽  
Polina Nikitich ◽  
Pavel A. Barsukov ◽  
Delphine Derrien ◽  
Anton Litvinov ◽  
...  

2020 ◽  
Author(s):  
Jhonathan Ephrath ◽  
Alon Ben-Gal ◽  
Amnon Bustan ◽  
Lina Zhao

&lt;p&gt;Salinity affects plant growth due to both osmotic and ionic stress. The root system is essential in defense mechanisms against salinity, particularly involving salt ion avoidance or exclusion. Jojoba (&lt;em&gt;Simmondsia chinensis&lt;/em&gt;) displays significant resistance to salinity. In the present study, Jojoba was planted in 60-L plastic buckets containing perlite growth medium and were provided with eight distinct salinity levels using two operating tanks of final irrigation solutions. Response of Jojoba to salinity was measured in above ground parameters and in roots using minirhizotron access tubes and imaging analysis. Leaf phosphorous and potassium concentrations decreased with increasing salinity level while leaf manganese, calcium, sodium and chloride concentrations increased with irrigation salinity level. Jojoba plants were found to have high level of storage of salt minerals in leaves but without effects on photosynthesis or transpiration. Roots exhibited different distribution patterns under different salinity treatments. Root length density increased with increased salinity at each depth. Root number and root length increased over time. During spring, the plant growth was faster than winter. Root diameter decreased over time due to new root development. Time had a more significant effect on root length density than irrigation water salinity or soil depth. Root number and root length were not significantly affected by the salt treatments.&lt;/p&gt;


2009 ◽  
Vol 60 (3) ◽  
pp. 280 ◽  
Author(s):  
Peter S. Searles ◽  
Diego A. Saravia ◽  
M. Cecilia Rousseaux

Several studies have evaluated many above-ground aspects of olive production, but essential root system characteristics have been little examined. The objective of our study was to evaluate root length density (RLD) and root distribution relative to soil water content in three commercial orchards (north-west Argentina). Depending on the orchard, the different drip emitter arrangements included either: (1) emitters spaced continuously at 1-m intervals along the drip line (CE-4; 4 emitters per tree); (2) 4 emitters per tree spaced at 1-m intervals, but with a space of 2 m between emitters of neighbouring trees (E-4); or (3) 2 emitters per tree with 4 m between emitters of neighbouring trees (E-2). All of the orchards included either var. Manzanilla fina or Manzanilla reina trees (5–8 years old) growing in sandy soils, although the specific characteristics of each orchard differed. Root length density values (2.5–3.5 cm/cm3) in the upper soil depth (0–0.5 m) were fairly uniform along the drip line in the continuous emitter (CE-4) orchard. In contrast, roots were more concentrated in the E-4 and E-2 orchards, in some cases with maximum RLD values of up to 7 cm/cm3. Approximately 70% of the root system was located in the upper 0.5 m of soil depth, and most of the roots were within 0.5 m of the drip line. For each of the three orchards, significant linear relationships between soil water content and RLD were detected based on 42 sampling positions that included various distances from the trunk and soil depths. Values of RLD averaged over the entire rooting zone and total tree root length per leaf area for the three orchards were estimated to range from 0.19 to 0.48 cm/cm3 and from 1.8 to 3.5 km/m2, respectively. These results should reduce the uncertainty associated with the magnitude of RLD values under drip irrigation as intensively managed olive orchards continue to expand in established and new growing regions.


1993 ◽  
Vol 11 (1) ◽  
pp. 39-40 ◽  
Author(s):  
Krishna N. Reddy ◽  
Megh Singh

Abstract A greenhouse study was conducted to evaluate the response of Carrizo citrange [Citrus sinensis (L.) Obs. × Poncirus trifoliata (L.) Raf.], Cleopatra mandarin (C. reticulata Blanco), sour orange (C. aurantium L.), and Swingle citrumelo [C. paradisi Macf. × P. trifoliata (L.) Raf.] citrus rootstock seedlings to multiple applications of Premier (fluometralin), Dual (metolachlor), Devrinol (napropamide), Solicam (norflurazon), Surflan (oryzalin), Prowl (pendimethalin), and Treflan trifluralin). The citrus rootstock responses ranged from a 11% reduction in shoot weight of sour orange with Treflan (trifluralin) to a 19% reduction in fibrous root weight of Swingle citrumelo with Surflan (oryzalin). Cleopatra mandarin was tolerant to all the seven herbicides. Dual (metolachlor), Devrinol (napropamide), Solicam (norflurazon), and Premier (fluometralin) were not phytotoxic to all four rootstocks.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 519a-519
Author(s):  
T. Caruso ◽  
F.P. Marra ◽  
A. Motisi ◽  
D. Giovannini

Length and distribution of the roots of 2-year old cv. `Flordaprince' peach trees grown under polyethylene greenhouse were studied over a two year period. The self-rooted, micropropagated trees were spaced 4.9 m between the row and 70, 52 and 42 cm. along the row to obtain a density of 3000, 4000 and 5000 trees/ha respectively. Orchard was clean cultivated, mulched along the row with black plastic fabric 1 m wide, and drip fertigated. Soon after harvest, for each density, the root system of one tree was totally excavated and root length, distribution, dry weight and nutrients content were determined. Total root length per tree was negatively related to planting density in two-year old trees (470, 380 and 320 m/tree respectively for 3000, 4000 and 5000 trees/ha). The shallowest root systems were found at 5000 trees/ha density and their length was unchanged from year to year. Root length density, ranging from 220 to 250 m/m), was only slightly affected by spacing in the two years. The roots were evenly distributed between the two sides of the rows.


1996 ◽  
Vol 6 (2) ◽  
pp. 134-137 ◽  
Author(s):  
J.G. Williamson ◽  
B.E. Maust

Two experiments were conducted to determine the effects of rootstock and bud-forcing treatment on scion budbreak and nursery tree growth of `Hamlin' orange. In Expt. 1, `Carrizo' citrange, `Swingle' citrumelo, and `Cleopatra' mandarin were budded with `Hamlin' orange and forced by one of the following methods: cutting off (purning away the rootstock top about 2 cm above the inserted scion bud); lopping (cutting half to two-thirds of the way through the rootstock stem 2 cm above the bud union, and breaking over the stem but leaving it attached); or bending (bending the rootstock shoot above the inserted scion bud and tying it to the base of the plant). For `Swingle' only, percent budbreak was less for bending or lopping compared to cutting off. For `Carrizo' and `Swingle', scion dry weights were less when plants were forced by cutting off compared to bending or lopping. For all rootstocks, whole-plant dry weights were greater for plants forced by bending and lopping than for plants forced by cutting off. In Expt. 2, scion buds on `Swingle' and `Cleopatra' plants were forced by the three methods in Expt. 1 plus combinations of bending with notching (making an inverted V incision through the bark and into the wood on the rootstock stem directly above the scion bud) and/or topping (removing the teminal 2 cm of rootstock shoot tips of plants forced by bending). Percent scion budbreak was high for `Cleopatra' plants regardless of forcing treatment. For `Swingle', scion budbreak was greater when bending was combined with notching than for bending alone. For `Cleopatra', plant dry weight was greatest for plants forced by lopping. When bending was combined with notching, or notching with topping, `Swingle' scion budbreak was comparable to cutting off, but plant dry weights were greater with these combination treatments than when cutting off was used.


2019 ◽  
Vol 16 (161) ◽  
pp. 20190556
Author(s):  
Yeonsu Jung ◽  
Keunhwan Park ◽  
Kaare H. Jensen ◽  
Wonjung Kim ◽  
Ho-Young Kim

Shaping a plant root into an ideal structure for water capture is increasingly important for sustainable agriculture in the era of global climate change. Although the current genetic engineering of crops favours deep-reaching roots, here we show that nature has apparently adopted a different strategy of shaping roots. We construct a mathematical model for optimal root length distribution by considering that plants seek maximal water uptake at the metabolic expenses of root growth. Our theory finds a logarithmic decrease of root length density with depth to be most beneficial for efficient water uptake, which is supported by biological data as well as our experiments using root-mimicking network systems. Our study provides a tool to gauge the relative performance of root networks in transgenic plants engineered to endure a water deficit. Moreover, we lay a fundamental framework for mechanical understanding and design of water-absorptive growing networks, such as medical and industrial fluid transport systems and soft robots, which grow in porous media including soils and biotissues.


Sign in / Sign up

Export Citation Format

Share Document