simmondsia chinensis
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Abdul Qadir ◽  
Nausheen Khan ◽  
Muhammad Arif ◽  
Shehla Nasar Mir Najib Ullah ◽  
Sauban Ahmed Khan ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 13199
Author(s):  
Fahad Alghabari

Salinity poses a serious challenge to agriculture across the globe. In the Middle East, countries such as Saudi Arabia are facing potential problems of salinity due to the use of processed saline Red Sea water for agriculture. To tackle this challenge, the current study was conducted with the objective of assessing the effects of magnetically (1.80 mT) treated normal agriculture water (NW = 2.11 DSm−1) and different concentrations of Red Sea water (RSWC1 = 5.61 DSm−1 and RSWC2 = 7.01 DSm−1) on the physiological traits (chlorophyll, photosynthesis rate, transpiration rate, stomatal conductance and membrane damage), antioxidant enzymes (superoxide dismutase, catalase and peroxidase), proline and agronomic characteristics (germination percentage, germination rate, shoot length and root length) of jojoba (Simmondsia chinensis) seedlings. The experiment was set in a glasshouse with three replicates, using RCBD with two factorial arrangements. The data were collected and subjected to statistical analysis using statistix8.1 and R-program. All magnetically treated concentrations of saline water showed significant improvements in all traits compared with their respective controls, except proline, membrane damage (MD) and germination rate (GR). However, the response of these all traits was more significant at NW compared with RSWC1 and RSWC2. Furthermore, correlation, PCA and heat map analysis revealed that all traits are significantly interlinked in determining the jojoba response to different concentrations of salinity, both in the presence and absence of MF.


2021 ◽  
Author(s):  
Raman Bala

Jojoba [Simmondsia chinensis (Link) Schneider] is evergreen, perennial and drought resistant shrub belongs to the family of Simmondsiaceae. It is a multipurpose oil seed crop mainly grown in desert regions of world. This plant has unique oil among plant kingdom which is chemically a liquid-wax. The liquid-wax is made up of an ester of long chain fatty acids and alcohols. The liquid-wax is unique in nature because have no traces of glycerine and easily modified via hydrolysis, hydrogenation, halogenation, sulfurization, phosphosulfurization and ozonization techniques. The main uses of liquid-wax in various industries like cosmetics, pharmaceuticals, petrochemicals and lubricants. It is a potential seed oil crop for desert region so it is well known as the gold of desert. The main purpose of this chapter is to review the complete information about this plant so that it can produce and utilized maximally. Moreover, the review focuses on biology, biogeography, physico-chemical properties of jojoba oil and propagation techniques of the plant of desert regions.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6059
Author(s):  
Zipora Tietel ◽  
Sarit Melamed ◽  
Noy Eretz-Kdosha ◽  
Ami Guetta ◽  
Raanan Gvirtz ◽  
...  

Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose–response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.


2021 ◽  
Vol 6 (3) ◽  
pp. 5
Author(s):  
Muhammad Akram ◽  
Faheem Aftab

Jojoba (Simmondsia chinensis L.) oil is also known as liquid wax or fixed oil. It is an important metabolite of jojoba having commercial importance in cosmetics as well as a potential biofuel source. We presented an efficient system for in vitro establishment of cell suspension cultures (CSC) from proliferating friable calluses. For this purpose, cotyledon, internode, and leaf explants were cultured on MS medium + 1, 2, 4, 6, 8 or 10 µM 2, 4-Dichlorophenoxyacetic acid (2, 4-D), α-Naphthalene acetic acid (NAA) alone or in combination with 1 or 2 µM N6-benzylaminopurine (BAP) or Kinetin. Results demonstrated that 100% healthy, friable and variegated calluses were obtained on 8 µM, 10 µM 2, 4-D or 2, 4-D 10 µM + 2 µM BAP and represented as callus lines (CL) CL-1, CL-2 or CL-3, respectively, after 38 days. One-gram callus tissue per CL was then immersed in the respective liquid medium and agitated on an orbital shaker at 60-70 rpm under the growth room conditions (25 ± 2 °C, 16 h light period) for the preparation of CSC. After 15 days, CSC was sieved and large clumps were removed. Growth measurement of CSC was determined by cell counting, packed cell volume (PCV) and cell viability. The highest number of viable cells was obtained at 2.57 OD with CL-3, where PCV was highest (0.35 ml) on CL-1 of 38 days old calluses. 2,3,5-Triphenyltetrazolium chloride was a reliable approach for the determination of cell viability of CSC.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 889
Author(s):  
Aviad Perry ◽  
Noemi Tel-Zur ◽  
Arnon Dag

Jojoba (Simmondsia chinensis) is a wax crop cultivated mainly in arid and semi-arid regions. This crop has been described as an alternate-bearing plant, meaning that it has a high-yield year (“on-year”) followed by a low-yield year (“off-year”). We investigated the effect of fruit load on jojoba’s vegetative and reproductive development. For two consecutive years, we experimented with two high-yielding cultivars—Benzioni and Hazerim—which had opposite fruit loads, i.e., one was under an on-year load, while the other was under an off-year load simultaneously. We found that removing the developing fruit from the shoot during an off-year promotes further vegetative growth in the same year, whereas in an on-year, this action has no effect. Moreover, after fruit removal in an on-year, there was a delay in vegetative growth renewal in the consecutive year, suggesting that the beginning of the growing period is dependent on the previous year’s yield load. We found that seed development in the 2018 season started a month earlier than in the 2017 season in both cultivars, regardless of fruit load. This early development was associated with higher wax content in the seeds. Hence, the wax accumulation rate, as a percentage of dry weight, was affected by year and not by fruit load. However, on-year seeds stopped growing earlier than off-year seeds, resulting in smaller seeds and an overall lower amount of wax per seed.


2021 ◽  
Vol 18 (1) ◽  
pp. 37-57
Author(s):  
Budour A. Alghamdi ◽  
Sameera O. Bafeel ◽  
Sherif Edris ◽  
Ahmed Atef ◽  
Mohammed Al-Matary ◽  
...  

The aim of this study was todetect the expression profiles of salt-related genes in the leaf transcriptome of Jojoba (Simmondsia chinensis) to decipher the molecular mechanisms underlying salt stress tolerance in this plant species. The analyzed RNA-Seq data identified numerous differentially expressed genesthat were mostly upregulated under salt (NaCl) stress conditions. The genes varied in their ability to limit cellular damage under stress conditions by regulatingthe production of reactive oxygen species (ROS). Some genes demonstrated the use of methylation/demethylation followed by intergenerational transmission of a “stress memory”. Other genes are known for their potential to produce proteins with superoxide dismutase (SOD) activity, the ability to detoxify metal ions and to produce molecular chaperones. Additional activities include regulating signal transductionandthe ion transport processes, the reprogramming of selective gene expression andthe maintenance of balanced sucrose content, ethylene signaling and homeostasis, the regulating of plasmodesmal permeability, ubiquitination,and selective protein degradation. Moreover, genes were also identified to be associated with cell wall remodeling, alleviating chlorophyll content, and accumulatinglower levels of sodium (Na+) and chloride (Cl-), as well as increased levels of lignin that function to support a plant’s integrity under salt stress. Overall, these data provide new insights into the molecular mechanisms at play during conditions of salt stress. These mechanisms ensure a plant’s survival and help to maintain its natural chemical compounds. These findings may be beneficial in furthering the use of this economically important plant.


Sign in / Sign up

Export Citation Format

Share Document