scholarly journals Aminoethoxyvinylglycine Inhibits Fruit Abscission Induced by Naphthaleneacetic Acid and Associated Relationships with Expression of Genes for Ethylene Biosynthesis, Perception, and Cell Wall Degradation in ‘Delicious’ Apples

2008 ◽  
Vol 133 (6) ◽  
pp. 727-734 ◽  
Author(s):  
Hong Zhu ◽  
Eric P. Beers ◽  
Rongcai Yuan

Effects of naphthaleneacetic acid (NAA) and aminoethoxyvinylglycine (AVG) on young fruit abscission, leaf and fruit ethylene production, and expression of genes related to ethylene biosynthesis and cell wall degradation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). NAA at 15 mg·L−1 increased fruit abscission and ethylene production of leaves and fruit when applied at the 11-mm stage of fruit development, whereas AVG, an inhibitor of ethylene biosynthesis, at 250 mg·L−1 reduced NAA-induced fruit abscission and ethylene production of leaves and fruit. NAA also increased expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (MdACS5A and MdACS5B), ACC oxidase gene (MdACO1), and ethylene receptor genes (MdETR1a, MdETR1b, MdETR2, MdERS1, and MdERS2) in fruit cortex and fruit abscission zones. However, AVG reduced NAA-induced expression of these genes except for MdERS2 in fruit abscission zones. NAA increased expression of the polygalacturonase gene MdPG2 in fruit abscission zones but not in fruit cortex, whereas AVG reduced NAA-enhanced expression of MdPG2 in fruit abscission zones. The expression of β-1,4-glucanase gene MdCel1 in fruit abscission zones was decreased by NAA but was unaffected by AVG. Our results suggest that ethylene biosynthesis, ethylene perception, and the MdPG2 gene are involved in young fruit abscission caused by NAA.

2010 ◽  
Vol 135 (5) ◽  
pp. 402-409 ◽  
Author(s):  
Hong Zhu ◽  
Rongcai Yuan ◽  
Duane W. Greene ◽  
Eric P. Beers

The effects of 1-methylcyclopropene (1-MCP) and naphthaleneacetic acid (NAA) on fruit set and the expression of genes related to ethylene biosynthesis and perception and cell wall degradation in apple (Malus ×domestica Borkh.) were studied when applied during the normal chemical thinning period. 1-MCP at 209 mg·L−1 had a small negative effect or no effect on the final fruit set, depending on the experiment, but could cause a transient delay of June drop when applied at petal fall or the 10-mm stage in ‘Pioneer McIntosh’ apple. 1-MCP at 160 mg·L−1 had no effect on fruit abscission but induced ethylene production by leaves and fruit of ‘Golden Delicious’ apple. NAA at 6 or 15 mg·L−1 effectively increased fruit abscission in both apple cultivars. NAA enhanced the expression of genes related to ethylene biosynthesis (MdACS5A, MdACS5B, and MdACO1) or perception (MdETR1, MdETR1b, MdETR2, MdERS1, and MdERS2) and cell wall degradation (MdPG2). 1-MCP did not affect the expression of MdACS5A and MdACS5B in the fruit abscission zone (FAZ), although it enhanced the expression of these two genes in the fruit cortex (FC) from 6 hours to 1 day after treatment. The expression of MdACO1 in both tissues was increased by 1-MCP by 3 days post-treatment and thereafter. 1-MCP had only a small influence on the expression of most ethylene receptor genes, with the exception of MdETR1, which was upregulated in the FC to a level similar to that observed for NAA treatment. In response to 1-MCP, in the FAZ, the expression of MdCel1 and MdPG2 was upregulated at the beginning and the end, respectively, of the experiment, but otherwise remained at or below control levels. 1-MCP did not inhibit NAA-induced abscission of young apple fruit, suggesting that abscission does not solely depend on ethylene signal transduction, or that the periods of effectiveness for 1-MCP and ethylene were asynchronous.


2010 ◽  
Vol 135 (5) ◽  
pp. 391-401 ◽  
Author(s):  
Jianguo Li ◽  
Hong Zhu ◽  
Rongcai Yuan

The expression of genes for ethylene biosynthesis, ethylene perception, and cell wall degradation in the fruit cortex and fruit abscission zone (FAZ) was examined in relation to preharvest fruit abscission (PFA) and fruit ripening in ‘Golden Delicious’ and ‘Fuji’ apple (Malus ×domestica Borkh.). PFA, fruit ethylene production, and fruit softening increased rapidly during fruit ripening in ‘Golden Delicious’ apples, whereas no PFA, little fruit ethylene, and gradual fruit softening were recorded in ‘Fuji’ apples. The transcript levels of 1-aminocyclopropane-1-carboxylate (ACC) synthase genes, MdACS1, MdACS3, and MdACS5A, increased rapidly in the fruit cortex of ‘Golden Delicious’ apples during ripening, but not in ‘Fuji’ apples. However, only the level of MdACS5A mRNA was up-regulated in the FAZ of ‘Golden Delicious’ apples. The transcript level of ACC oxidase gene, MdACO1, increased in the fruit cortex for both cultivars but increased only in the FAZ of ‘Golden Delicious’ apples. Expression of the ethylene receptor genes, MdETR1, MdETR2, MdERS1, and MdERS2, increased in the fruit cortex for both cultivars, but only MdETR2 and MdERS2 increased in the FAZ of ‘Golden Delicious’ apples. The transcript levels of MdPG2, a polygalacturonase gene (PG), and MdEG1, a β-1,4-glucanase gene, markedly increased only in the FAZ of ‘Golden Delicious’ apples, whereas only MdPG1 rapidly increased in the fruit cortex of ‘Golden Delicious’ apples. Our results suggested that MdACS5A, MdACO1, MdPG2, and MdEG1 in the FAZ might be related to the difference in PFA between these two cultivars, whereas MdACS1 and MdPG1 were associated with fruit softening.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1454-1460 ◽  
Author(s):  
Rongcai Yuan ◽  
Jianguo Li

Effects of naphthaleneacetic acid (NAA), aminoethoxyvinylglycine (AVG), and sprayable 1-methylcyclopropene (1-MCP) alone or in combination on fruit ethylene production, preharvest fruit drop, fruit quality, and fruit maturation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). 1-MCP and AVG + NAA, when applied 15 days before anticipated harvest (DBAH) for untreated control trees, more effectively delayed preharvest fruit drop than AVG or NAA used alone. However, there was no significant difference in ethylene production between fruit treated with 1-MCP or AVG + NAA and those treated by AVG. Two applications of NAA increased fruit ethylene production and fruit softening, whereas AVG inhibited NAA-enhanced fruit ethylene production and fruit softening. There was no significant difference in fruit ethylene production, fruit firmness, and fruit drop control between one and two applications of 1-MCP. The concentrations of 1-MCP did not affect the efficacy of 1-MCP when applied 15 DBAH, but high concentration of 1-MCP more effectively delayed preharvest fruit drop than low concentration of 1-MCP when applied 7 DBAH. Both AVG and 1-MCP suppressed expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase gene MdACS1, ACC oxidase gene MdACO1, and polygalacturonase gene MdPG1 in fruit. Expression of ACS5A and MdACO1 but not MdACS1 in fruit abscission zones was decreased by AVG and 1-MCP. 1-MCP more effectively suppressed expression of MdPG2 in fruit abscission zones than AVG alone.


2021 ◽  
Vol 22 (16) ◽  
pp. 8830
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali M. Ayyanath ◽  
Praveen K. Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in ‘Honeycrisp’. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of ‘Honeycrisp’ apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 571d-571
Author(s):  
Jean-Claude Pech

We have generated transgenic Cantaloupe Charentais melons expressing an ACC oxidase antisense gene in which ethylene production was reduced to less than 1% as compared to control untransformed fruits. As a consequence, some aspects of the ripening process were strongly inhibited (aroma volatiles production, chlorophyll and cell wall degradation, pigmentation of the rind, activation of peduncular abscission zone) while others remained unchanged (coloration of the flesh), allowing us to distinguish between ethylene-dependent and ethylene-independent pathways. Some postharvest characteristics of the transgenic fruit are described in terms of expression of ripening-related genes, respiratory behavior, and biochemical composition. Data also are presented showing that exogenous ethylene treatments could reverse the antisense phenotype.


2021 ◽  
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali Mohan Ayyanath ◽  
Praveen K Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to pre-harvest fruit drop which is more pronounced in 'Honeycrisp'. Using a transcriptomic approach, we analyzed the molecular mechanisms of fruit retention in 'Honeycrisp'. A total of 726 differentially expressed genes (DEGs) were identified in the abscission zone of hexanal-treated and untreated fruit (FAZ). Hexanal down-regulated the genes involved in ethylene biosynthesis, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1carboxylic acid oxidases (ACO3, ACO4 and ACO4-like). Genes related to ABA biosynthesis (FDPS and CLE25) were also down-regulated. On the contrary, gibberellic acid (GA) biosynthesis genes, gibberellin 20 oxidase1-like (GA20OX-like) and ent-kaurene oxidase (KO) were up-regulated. Further, hexanal down-regulated the expression of genes related to cell-wall remodelling enzymes such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase; EG) and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Hexanal also reduced ethylene, and abscisic acid (ABA) production at commercial harvest stage. Hexanal reduced ethylene production in fruits and thus reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell-wall integrity of FAZ cells by regulating genes involved in cell-wall modifications. Our findings show that fruit abscission is delayed by hexanal, by down regulating ABA through an ethylene-dependent mechanism.


2002 ◽  
Vol 127 (6) ◽  
pp. 998-1005 ◽  
Author(s):  
Sastry Jayanty ◽  
Jun Song ◽  
Nicole M. Rubinstein ◽  
Andrés Chong ◽  
Randolph M. Beaudry

The temporal relationship between changes in ethylene production, respiration, skin color, chlorophyll fluorescence, volatile ester biosynthesis, and expression of ACC oxidase (ACO) and alcohol acyl-CoA transferase (AAT) in ripening banana (Musa L. spp., AAA group, Cavendish subgroup. `Valery') fruit was investigated at 22 °C. Ethylene production rose to a peak a few hours after the onset of its logarithmic phase; the peak in production coincided with maximal ACO expression. The respiratory rise began as ethylene production increased, reaching its maximum ≈30 to 40 hours after ethylene production had peaked. Green skin coloration and photochemical efficiency, as measured by chlorophyll fluorescence, declined simultaneously after the peak in ethylene biosynthesis. Natural ester biosynthesis began 40 to 50 hours after the peak in ethylene biosynthesis, reaching maximal levels 3 to 4 days later. While AAT expression was detected throughout, the maximum level of expression was detected at the onset of natural ester biosynthesis. The synthesis of unsaturated esters began 100 hours after the peak in ethylene and increased with time, suggesting the lipoxygenase pathway be a source of ester substrates late in ripening. Incorporation of exogenously supplied ester precursors (1-butanol, butyric acid, and 3-methyl-1-butanol) in the vapor phase into esters was maturity-dependent. The pattern of induced esters and expression data for AAT suggested that banana fruit have the capacity to synthesize esters over 100 hours before the onset of natural ester biosynthesis. We hypothesize the primary limiting factor in ester biosynthesis before natural production is precursor availability, but, as ester biosynthesis is engaged, the activity of alcohol acyl-CoA transferase the enzyme responsible for ester biosynthesis, exerts a major influence.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1081A-1081
Author(s):  
Richard McAvoy ◽  
Mariya Khodakovskaya ◽  
William Smith ◽  
Degang Zhao ◽  
Hong Liu ◽  
...  

A 920 bp fragment of the ACC oxidase gene promoter from tomato (LEACO1) was used to drive GUS gene expression. The LEACO10.92kb fragment contained two stress-responsive short motifs; a 10 bp TCA motif (5'-TCATCTTCTT-3') twice (allowing two substitutions) and an 8 bp element (5'-AA/TTTCAAA-3') once. The TCA motif is found in over 30 stress- and pathogen-inducible genes while the 8 bp element is necessary for ethylene-response in the carnation GST1 and the tomato E4 gene promoters. Previously in chrysanthemum, cytokinin regulation with LEACO10.92kb produced dramatic increases in lateral branching and bud initiation. Tobacco plants carrying LEACO10.92kb–GUS were used to examine the response of the LEACO10.92kb promoter to various hormones and hormone inhibitors. GUS activity in LEACO10.92kb–GUS plants was detected in leaves and stems, but not roots. High expression was detected in shoots with the apical bud intact, but GUS activity decreased with the apical bud removed. Applying IAA to the shoot apex after removing the apical bud, restored GUS activity. However, the IAA transport inhibitor TIBA reduced GUS activity in shoots with intact apical buds, and in IAA-treated shoots with excised buds. In shoots with excised apical buds, GUS activity increased when the ethylene precursor ACC was applied, but decreased in intact shoots when the ethylene biosynthesis inhibitor AOA was applied. These data suggest that auxins produced in the apical meristem are capable of regulating LEACO10.92kb activity, probably through auxin-induced ethylene biosynthetic pathway activity.


2005 ◽  
Vol 32 (10) ◽  
pp. 891 ◽  
Author(s):  
Nigel E. Gapper ◽  
Simon A. Coupe ◽  
Marian J. McKenzie ◽  
Richard W. Scott ◽  
Mary C. Christey ◽  
...  

To gain an in-depth understanding of the role of ethylene in post harvest senescence, we used broccoli (Brassica oleracea var. italica) as our model species. The senescence-associated asparagine synthetase (AS) promoter from asparagus was used to drive the expression of an antisense 1-aminocyclopropane-1-carboxylate oxidase (ACO) cDNA from broccoli, BoACO2, to reduce ethylene production following harvest. Physiological analyses revealed that transgenic broccoli lines harbouring the antisense BoACO2 gene construct (designated as AS-asACO) displayed delayed senescence in both detached leaves and detached heads as measured by hue angle. Harvested floret tissue from these plants also showed a delayed loss of chlorophyll, lower protease activity and higher total protein content, and changes in transcript levels of senescence marker genes when compared with wild type and transgenic lines transformed with an empty T-DNA. Genes that were down-regulated included those coding for cysteine protease (BoCP5), metallothionein-like protein (BoMT1), hexokinase (BoHK1), invertase (BoINV1) and sucrose transporters (BoSUC1 and BoSUC2). Northern analysis for BoACO1 and BoACO2, ACO assays and western analysis, revealed reduced ACO transcript, enzyme activity and protein accumulation, as well as reduced ethylene production in the transgenic AS-asACO lines when compared with controls, confirming that a key enzyme regulating ethylene biosynthesis was reduced in these plants. This, together with the changes observed in gene expression, confirm a significant role for ethylene in regulating the events leading to senescence in broccoli following harvest.


Sign in / Sign up

Export Citation Format

Share Document