scholarly journals Processing of formate solutions obtained from red mud leaching

2021 ◽  
Vol 25 (5) ◽  
pp. 633-642
Author(s):  
V. M. Sizyakov ◽  
B. A. Kozyrev

The paper determines the indicators of the developed process flow for the complex processing of red sludge via the formate method: recovery of components; yield and composition of products when processing a sample of formate solution obtained from red mud leaching. The conducted experiments used red mud generated in the production of alumina at the Urals Aluminium Smelter. The samples of formate solution obtained in the course of red mud leaching were analyzed using an Optima 8000 ICP-OES Spectrometer, a Sartorius MA-30 Moisture Analyzer to measure moisture content, as well as an ARL 9800 XRF Spectrometer to ascertain the mass fraction of elements in metal and nonmetal specimens found in one of three states (solid, liquid, or powder). These experiments were performed while continuously measuring and monitoring pH values by means of a pH meter having a thermal compensation function. The performed experiments involved the total recovery of valuable elements from formate solutions produced during red mud leaching. A concentrate containing Al, Sc, and rare earth elements (REEs) was processed to produce scandium oxide and rare earth metal concentrate (after dissolving aluminum in an alkali). Rare earth metals and scandium were shown to concentrate in the solid phase; scandium was then selectively leached with a sodium bicarbonate solution to form water-soluble carbonate complexes [Sc(CO3)4]5- having carbonate ions СО32- and НСО3-. When using the proposed technology, the overall recovery of scandium and REEs amounts to 98–99%, whereas that of aluminum, calcium formate, and sodium formate from the produced solution reaches 99%. The processing of formate solution yields the following end products: scandium oxide (99 wt% Sc2O3) and REE concentrate (content of 56.1%). The paper demonstrates the possibility in pri nciple to process solutions obtained from the flow-through leaching of red mud via the formate method.

2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

2020 ◽  
Vol 49 (42) ◽  
pp. 14985-14994
Author(s):  
Xu-Sheng Gao ◽  
Mei-Juan Ding ◽  
Jin Zhang ◽  
Li-Duo Zhao ◽  
Xiao-Ming Ren

All solid solutions (EuxY1−x-PTC, x = 0.013–0.82) are isomorphic to Eu-PTC, but different from Y-PTC, and show phase selectivity as well as excitation wavelength dependent emission.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1714
Author(s):  
Paweł Wiśniewski

This study presents the general characteristics of binders used in precision casting of Nickel-based superalloys. Three groups of binders were described: resins, organic compounds, and materials containing nanoparticles in alcohol or aqueous systems. This study also includes literature reports on materials commonly used and those recently replaced by water-soluble binders, i.e., ethyl silicate (ES) and hydrolysed ethyl silicate (HES). The appearance of new and interesting solutions containing nano-alumina is described, as well as other solutions at the initial stage of scientific research, such as those containing biopolymers, biodegradable polycaprolactone (PCL), or modified starch. Special attention is paid to four binders containing nano-SiO2 intended for the first layers (Ludox AM, Ludox SK) and structural layers (EHT, Remasol) of shell moulds. Their morphology, viscosity, density, reactions, and electrokinetic potential were investigated. The binders were characterized by a high solid-phase content (>28%), viscosity, and density close to that of water (1–2 mPa·s) and good electrokinetic stability. The nanoparticles contained in the binders were approximately spherically shaped with an average particle size of 16–25 nm.


2021 ◽  
Vol 1104 (1) ◽  
pp. 012025
Author(s):  
Sachendra ◽  
Shailesh Kumar Singh ◽  
Ujjwal ◽  
Satyajeet Kumar ◽  
Kuldeep Singh

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document