The Use of Grid Soil Sampling to Measure Soil Nutrient Variation Within Intensively Managed Grass Fields in the UK

Author(s):  
M. A. Froment ◽  
A. G. Chalmers ◽  
S. Peel ◽  
C.J. Dawson
2021 ◽  
Author(s):  
Emma Hayes ◽  
Suzanne Higgins ◽  
Donal Mullan ◽  
Josie Geris

<p>The EU Water Framework Directive (WFD) aims to target prevalent poor water quality status. Of the various contributing sources agriculture is particularly important due to the high loading rates of sediment and nutrient losses associated with fertilisation, sowing, and cropping regimes. Understanding soil nutrient status and the potential pathways for nutrient loss either through point or diffuse sources is an important step to improve water quality from an agricultural perspective. Research has demonstrated extensive in-field variability in soil nutrient status. A sampling regime that explores this variability at a sub-field scale is necessary. Traditional soil sampling consists of taking 20-30 cores per field in a W-shaped formation to produce a single bulked core, however, it generally fails to locate nutrient hotspots at finer resolutions. Inappropriate generalised fertilisation and management recommendations can be made in which nutrient hotspots or deficient zones are overlooked. Gridded soil sampling can reveal the full degree of in-field variability in nutrient status to inform more precise and site-specific nutrient applications. High soil phosphorus levels and the concept of legacy nutrient accumulation due to long-term over-application of phosphorus fertiliser in addition to animal slurry is a problem across the island of Ireland.</p><p>This research aims to locate and quantify the presence of soil nutrient hotspots at several field-scale locations in the cross-border Blackwater catchment in Northern Ireland / Republic of Ireland. Based on 35 m sampling grids, the nutrient content at unsampled locations in each field was determined using GIS interpolation techniques. Particular attention was paid to phosphorus, given its role in eutrophication. Gridded soil sampling enables the identification of nutrient hotspots within fields and when combined with an analysis of their location in relation to in-field landscape characteristics and knowledge of current management regimes, the risk of nutrient or sediment loss potential may be defined. This research concluded that traditional W soil sampling of producing one average value per field is not appropriate to uncover the degree of spatial variability in nutrient status and is inappropriate for catchment management of agricultural systems for controlling nutrient losses. Soil sampling at multiple locations per field is deemed to be cost-prohibitive for many farmers. However, sub-field scale soil sampling and appropriate geostatistical interpolation techniques can reveal the degree of variability and suggest an appropriate resolution for field-scale nutrient management that may be necessary to achieve measurable improvements in water quality.</p>


2018 ◽  
Vol 3 (02) ◽  
pp. 108-115
Author(s):  
S. P. Vista ◽  
T. B. Ghimire ◽  
T. S. Rai ◽  
B. S. Kutu ◽  
B. K. Karna

Potato is a staple food crop in high hills and mountains and a major vegetable throughout the country and one of the most important cash generating crops in Nepal. With the efforts undertaken by research and extension sectors, its productivity has significantly increased in last twenty years. However, this is not sufficient for increasing population of the country. Considering its potentiality for income, employment, industrial products, export and processing, appropriate technologies are urgent.Soil fertility evaluation is the most basic decision making tool for the sustainable soil nutrient management. Soil fertility studies and mapping is an effective way to diagnose soil status and recommend as per the need of the nutrient to particular crop in the area. This research aims to assess and prepare soil nutrient map of potato super zone, Kavrepalanchowk in Nepal. The specific objectives of the research were to assess soil texture, pH and organic matter status and simultaneously prepare soil fertility map of the potato super zone. A total of 202 soil samples were collected and nutrients were analyzed using standard procedure in the soil laboratory. Composite soil samples were collected from 6 to 10 different spots of the area at 0-20 cm depth by using soil auger. The GPS location of each soil sampling point was noted. The soil sampling point of each zone was determined by studying various aspects (area, slope, colour, texture, etc.) of the study area. Based on the nutrient status, nutrient maps were prepared and presented. Soil fertility maps were prepared by observing the critical nutrients required for the specific crops and by giving those nutrients certain ranking based on the nutrients role for the crop. The soil of Potato super zone was mostly found to be silty loam, moderately acidic (pH 5.9), medium in organic matter content (2.67%) and total nitrogen (0.13%), high in available phosphorus content (56 kg/ha) and available potassium (356kg/ha). There is also sandy loam, loam and silty clay loam types of soil in the area. Soil fertility maps were prepared by setting criteria based on nutrient status that were tested in the laboratory and on the basis of nutrients that are critical for each crops of the super zones. Vegetable super zone soil was found having medium (50%) and high (30%) fertility status. Based on the soil analysis report, it could be concluded that the soils of potato super zone is fair enough for cultivating potato crop at the moment.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8695 ◽  
Author(s):  
Jake Bell ◽  
Kazutomo Yokoya ◽  
Jonathan P. Kendon ◽  
Viswambharan Sarasan

Cephalanthera rubra (L.) Rich., Red Helleborine, is a widespread orchid in Europe but known only from three very small populations in England. These populations are in decline with no natural seed setting for more than a decade. The species may become extinct in the UK soon unless viable strategies are in place for ex situ conservation, especially the use of symbiotic propagation. Because of the fragile nature of the populations in England mycorrhizal fungal diversity study is not feasible. Therefore, to understand the factors needed for healthy Red Helleborine populations, soil characteristics and diversity of culturable root-derived fungi of the populations from a small area in the Loire Valley in France were studied. The main objectives of the study were: (1) Which culturable mycorrhizal fungi associated with C. rubra roots and (2) To what extent is variation in fungal communities related to variation in soil characteristics? Here, we report a significant difference in diversity of culturable mycorrhizal and non-mycorrhizal fungi depending on soil pH and phosphorus content. Mycorrhizal associations were favoured by plants in locations with low soil nutrient availability and comparatively higher pH. Our study shows that mycorrhizal fungi, both ecto and endo, can be cultured from roots of plants at different maturity stages.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256215
Author(s):  
Margaret A. Connor ◽  
Stephanie Tarvin ◽  
Megan Quail ◽  
Sven Peter Batke

Humid coastal dune slacks are an endangered habitat in Northwestern Europe. In the UK, dune slacks are currently classified as being in ‘unfavourable’ condition, with projected decrease in England of up to 30% by 2036. Studies in mainland Europe suggest that regional factors (e.g. slack area, age, and isolation) are more important than local factors (e.g. soil, pH, soil nutrient and water status) in driving successional vegetation processes in coastal slacks. However, this has never been tested for the UK, where approximately 14% of European slacks occur. We used previously established survey protocols to test whether regional factors are more important than local factors in UK coastal slacks, along the Sefton Coast in NW England. We found that slack area and slack age were more important than local factors in driving plant community composition and species richness. We also showed that higher levels of management, such as active grazing and invasive shrub and tree removal, are effective in increasing soil moisture levels in slacks. Our results suggest that similar successional processes are likely to be important in slacks in the NW of England, compared to mainland Europe.


Sign in / Sign up

Export Citation Format

Share Document