Salt Tolerance of Safflower Varieties ( Carthamus Tinctorius L.) during Germination 1

1972 ◽  
Vol 64 (2) ◽  
pp. 256-257 ◽  
Author(s):  
S. R. Ghorashy ◽  
N. Sionit ◽  
M. Kheradnam
2018 ◽  
Vol 13 ◽  
pp. 16-22 ◽  
Author(s):  
Fatemeh Shaki ◽  
Hasan Ebrahimzadeh Maboud ◽  
Vahid Niknam

2021 ◽  
Vol 12 ◽  
Author(s):  
Emily Thoday-Kennedy ◽  
Sameer Joshi ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
David Hudson ◽  
...  

Salinity is a major contributing factor to the degradation of arable land, and reductions in crop growth and yield. To overcome these limitations, the breeding of crop varieties with improved salt tolerance is needed. This requires effective and high-throughput phenotyping to optimize germplasm enhancement. Safflower (Carthamus tinctorius L.), is an underappreciated but highly versatile oilseed crop, capable of growing in saline and arid environments. To develop an effective and rapid phenotyping protocol to differentiate salt responses in safflower genotypes, experiments were conducted in the automated imaging facility at Plant Phenomics Victoria, Horsham, focussing on digital phenotyping at early vegetative growth. The initial experiment, at 0, 125, 250, and 350 mM sodium chloride (NaCl), showed that 250 mM NaCl was optimum to differentiate salt sensitive and tolerant genotypes. Phenotyping of a diverse set of 200 safflower genotypes using the developed protocol defined four classes of salt tolerance or sensitivity, based on biomass and ion accumulation. Salt tolerance in safflower was dependent on the exclusion of Na+ from shoot tissue and the maintenance of K+ uptake. Salinity response identified in glasshouse experiments showed some consistency with the performance of representatively selected genotypes tested under sodic field conditions. Overall, our results suggest that digital phenotyping can be an effective high-throughput approach in identifying candidate genotypes for salt tolerance in safflower.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
NK Bouraoui ◽  
S Oueslati ◽  
H Falleh ◽  
F Harbaoui ◽  
R Ksouri ◽  
...  

2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2017 ◽  
Vol 16 (3) ◽  
pp. 109-118 ◽  
Author(s):  
Irfan Afzal ◽  
Abdul Rahim ◽  
Muhammad Qasim ◽  
Adnan Younis ◽  
Aamir Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document