plant phenomics
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Patrick Hüther ◽  
Niklas Schandry ◽  
Katharina Jandrasits ◽  
Ilja Bezrukov ◽  
Claude Becker

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4363
Author(s):  
Shona Nabwire ◽  
Hyun-Kwon Suh ◽  
Moon S. Kim ◽  
Insuck Baek ◽  
Byoung-Kwan Cho

Plant phenomics has been rapidly advancing over the past few years. This advancement is attributed to the increased innovation and availability of new technologies which can enable the high-throughput phenotyping of complex plant traits. The application of artificial intelligence in various domains of science has also grown exponentially in recent years. Notably, the computer vision, machine learning, and deep learning aspects of artificial intelligence have been successfully integrated into non-invasive imaging techniques. This integration is gradually improving the efficiency of data collection and analysis through the application of machine and deep learning for robust image analysis. In addition, artificial intelligence has fostered the development of software and tools applied in field phenotyping for data collection and management. These include open-source devices and tools which are enabling community driven research and data-sharing, thereby availing the large amounts of data required for the accurate study of phenotypes. This paper reviews more than one hundred current state-of-the-art papers concerning AI-applied plant phenotyping published between 2010 and 2020. It provides an overview of current phenotyping technologies and the ongoing integration of artificial intelligence into plant phenotyping. Lastly, the limitations of the current approaches/methods and future directions are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily Thoday-Kennedy ◽  
Sameer Joshi ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
David Hudson ◽  
...  

Salinity is a major contributing factor to the degradation of arable land, and reductions in crop growth and yield. To overcome these limitations, the breeding of crop varieties with improved salt tolerance is needed. This requires effective and high-throughput phenotyping to optimize germplasm enhancement. Safflower (Carthamus tinctorius L.), is an underappreciated but highly versatile oilseed crop, capable of growing in saline and arid environments. To develop an effective and rapid phenotyping protocol to differentiate salt responses in safflower genotypes, experiments were conducted in the automated imaging facility at Plant Phenomics Victoria, Horsham, focussing on digital phenotyping at early vegetative growth. The initial experiment, at 0, 125, 250, and 350 mM sodium chloride (NaCl), showed that 250 mM NaCl was optimum to differentiate salt sensitive and tolerant genotypes. Phenotyping of a diverse set of 200 safflower genotypes using the developed protocol defined four classes of salt tolerance or sensitivity, based on biomass and ion accumulation. Salt tolerance in safflower was dependent on the exclusion of Na+ from shoot tissue and the maintenance of K+ uptake. Salinity response identified in glasshouse experiments showed some consistency with the performance of representatively selected genotypes tested under sodic field conditions. Overall, our results suggest that digital phenotyping can be an effective high-throughput approach in identifying candidate genotypes for salt tolerance in safflower.


2021 ◽  
Vol 13 (6) ◽  
pp. 1212
Author(s):  
Saba Rabab ◽  
Edmond Breen ◽  
Alem Gebremedhin ◽  
Fan Shi ◽  
Pieter Badenhorst ◽  
...  

The extraction of automated plant phenomics from digital images has advanced in recent years. However, the accuracy of extracted phenomics, especially for individual plants in a field environment, requires improvement. In this paper, a new and efficient method of extracting individual plant areas and their mean normalized difference vegetation index from high-resolution digital images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral images taken from the top view. First, the center points of individual plants from digital images were located to exclude plant positions without plants. Second, the accurate area of each plant was extracted using its center point and radius. Third, the accurate mean normalized difference vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75 across four time points. The methods proposed are applicable to other crops where individual plant phenotypes are of interest.


2021 ◽  
Author(s):  
Jens Klump ◽  
Tim Brown ◽  
Rohan Clarke ◽  
Robert Glasgow ◽  
Steve Micklethwaite ◽  
...  

<p>Remotely Piloted Aircraft (RPA), commonly known as drones, provide sensing capabilities that address the critical scale-gap between ground- and satellite-based observations. Their versatility allows researchers to deliver near-real-time information for society.</p><p>Key to delivering RPA information is the capacity to enable researchers to systematically collect, process, manage and share RPA-borne sensor data. Importantly, this should allow vertical integration across scales and horizontal integration across different RPA deployments. However, as an emerging technology, the best practice and standards are still developing and the large data volumes collected during RPA missions can be challenging.</p><p>Australia’s Scalable Drone Cloud (ASDC) aims to coordinate and standardise how scientists from across earth, environmental and agricultural research manage, process and analyse data collected by RPA-borne sensors, by establishing best practices in managing 3D-geospatial data and aligned with the FAIR data principles.</p><p>The ASDC is building a cloud-native platform for research drone data management and analytics, driven by exemplar data management practices, data-processing pipelines, and search and discovery of drone data. The aim of the platform is to integrate sensing capabilities with easy-to-use storage, processing, visualisation and data analysis tools (including computer vision / deep learning techniques) to establish a national ecosystem for drone data management.</p><p>The ASDC is a partnership of the Monash Drone Discovery Platform, CSIRO and key National Collaborative Research Infrastructure (NCRIS) capabilities including the Australian Research Data Commons (ARDC), Australian Plant Phenomics Facility (APPF), Terrestrial Ecosystem Research Network (TERN), and AuScope.</p><p>This presentation outlines the roadmap and first proof-of-concept implementation of the ASDC.</p>


2021 ◽  
Vol 171 ◽  
pp. 202-223
Author(s):  
Shichao Jin ◽  
Xiliang Sun ◽  
Fangfang Wu ◽  
Yanjun Su ◽  
Yumei Li ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
M. Griffiths
Keyword(s):  
3D Print ◽  

Sign in / Sign up

Export Citation Format

Share Document