scholarly journals Biomass Yield of Warm-Season Grasses Affected by Nitrogen and Harvest Management

2018 ◽  
Vol 110 (3) ◽  
pp. 890-899 ◽  
Author(s):  
Chamara S. Weerasekara ◽  
Newell R. Kitchen ◽  
Shibu Jose ◽  
Peter P. Motavalli ◽  
Sougata Bardhan ◽  
...  
2017 ◽  
Author(s):  
◽  
Chamara Sandaruwan Weerasekara Imbulana Acharige

Perennial warm-season grasses including switchgrass (Panicum virgatum L.), big bluestem (Andropogon geradii Vitman), and Indiangrass (Sorghastrum nutans L.) have drawn interest as bioenergy feedstocks due to their high yielding capacity with minimal amounts of inputs under a wide range of environments, and their capability to produce multiple environmental benefits. Nitrogen (N) fertility and harvest timing are considered as critical management practices when optimizing biomass yield and the feedstock quality of these grasses. The objective of this investigation was to quantify the impact of N fertilizer rate, N timing and harvest date on warm season biomass dry matter yield. Research was conducted in 2014 and 2015 on a total of four field-plot locations situated in central and west-central Missouri. Nitrogen fertilizer was applied using dry ammonium nitrate at the rates of 0, 34, 67, and 101 kg ha-1 at two application times, all N early spring and split N (early spring and following 1st harvest). Harvest treatments were as follows: 1) one cut in September; 2) one cut in November; 3) one cut in June and a second in September; and 4) one cut in June and a second in November. Treatments were arranged in a split-plot design with N rate as the main plot and harvest as the sub-plot in arandomized complete block design. Both N and harvest date and their interactions impacted biomass yield at all four locations. Delaying harvesting until late fall or killing frost increased yield. November harvest in combination with N rates grater than or equal to 67 kg ha-1 year-1 produced higher yields compared to the control and 34 kg ha-1N treatments and other harvest timing strategies. Although N was needed to optimize yield, partial factor 24 productivity (PFP) of applied N was flat when N applied was greater than 34 kg ha-1. Nitrogen fertilization at 67 kg ha-1 per growing season provided an opportunity to maintain a balance between both yield and efficiency of N inputs. Results of this research highlight the interactions of N fertilization and harvest management have when optimizing yield of warm-season grasses grown as bioenergy feedstocks. List of acronyms: N, Nitrogen; PFP, partial factor productivity.


GCB Bioenergy ◽  
2013 ◽  
Vol 6 (5) ◽  
pp. 534-543 ◽  
Author(s):  
Naroon Waramit ◽  
Kenneth J. Moore ◽  
Emily Heaton

Crop Science ◽  
2003 ◽  
Vol 43 (3) ◽  
pp. 874 ◽  
Author(s):  
I. C. Madakadze ◽  
K. A. Stewart ◽  
R. M. Madakadze ◽  
D. L. Smith

Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 375-379 ◽  
Author(s):  
Thomas J. Peters ◽  
Russell S. Moomaw ◽  
Alex R. Martin

The control of three summer annual grass weeds with herbicides during establishment of forage grasses was studied near Concord and Mead, NE, in 1984, 1985, and 1986. Three cool-season forage grasses, intermediate wheatgrass, tall fescue, and smooth bromegrass, and two warm-season grasses, big bluestem and switchgrass, were included. The control of three major summer annual grasses, green foxtail, barnyardgrass, and large crabgrass, was excellent with fenoxaprop at 0.22 kg ai/ha. Slight to moderate injury to cool-season forage grasses and severe injury to warm-season grasses were evident. Sethoxydim at 0.22 kg ai/ha and haloxyfop at 0.11 kg ai/ha controlled green foxtail and large crabgrass, but not barnyardgrass. Sulfometuron-treated big bluestem and switchgrass plots had the best forage stand frequencies and yields and, at the rate used, sulfometuron satisfactorily controlled green foxtail but only marginally controlled barnyardgrass and large crabgrass.


1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.


2017 ◽  
Vol 95 (7) ◽  
pp. 3143-3153 ◽  
Author(s):  
W. M. Backus ◽  
J. C. Waller ◽  
G. E Bates ◽  
C. A. Harper ◽  
A. Saxton ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1845
Author(s):  
Santosh Nayak ◽  
Hem Bhandari ◽  
Carl Sams ◽  
Virginia Sykes ◽  
Haileab Hilafu ◽  
...  

Switchgrass (Panicum virgatum L.) is a warm-season, perennial grass valued as a promising candidate species for bioenergy feedstock production. Biomass yield is the most important trait for any bioenergy feedstock. This study was focused on understanding the genetics underlying biomass yield and feedstock quality traits in a “Kanlow” population. The objectives of this study were to (i) assess genetic variation (ii) estimate the narrow sense heritability, and (iii) predict genetic gain per cycle of selection for biomass yield and the components of lignocelluloses. Fifty-four Kanlow half-sib (KHS) families along with Kanlow check were planted in a randomized complete block design with three replications at two locations in Tennessee: Knoxville and Crossville. The data were recorded for two consecutive years: 2013 and 2014. The result showed a significant genetic variation for biomass yield (p < 0.05), hemicellulose concentration (p < 0.05), and lignin concentration (p < 0.01). The narrow sense heritability estimates for biomass yield was very low (0.10), indicating a possible challenge to improve this trait. A genetic gain of 16.5% is predicted for biomass yield in each cycle of selection by recombining parental clones of 10% of superior progenies.


Sign in / Sign up

Export Citation Format

Share Document