Implications of Increasing Carbon Dioxide and Climate Change for Agricultural Productivity and Water Resources

Author(s):  
J. Goudriaan ◽  
M. H. Unsworth
Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Human Ecology ◽  
2021 ◽  
Author(s):  
Michael Schnegg ◽  
Coral Iris O’Brian ◽  
Inga Janina Sievert

AbstractInternational surveys suggest people increasingly agree the climate is changing and humans are the cause. One reading of this is that people have adopted the scientific point of view. Based on a sample of 28 ethnographic cases we argue that this conclusion might be premature. Communities merge scientific explanations with local knowledge in hybrid ways. This is possible because both discourses blame humans as the cause of the changes they observe. However, the specific factors or agents blamed differ in each case. Whereas scientists identify carbon dioxide producers in particular world regions, indigenous communities often blame themselves, since, in many lay ontologies, the weather is typically perceived as a local phenomenon, which rewards and punishes people for their actions. Thus, while survey results show approval of the scientific view, this agreement is often understood differently and leads to diverging ways of allocating meaning about humans and the weather.


Sign in / Sign up

Export Citation Format

Share Document