scholarly journals The impacts of ground-based logging equipment on forest soil

2014 ◽  
Vol 60 (No. 1) ◽  
pp. 28-34 ◽  
Author(s):  
A. Solgi ◽  
A. Najafi

Soil properties can be affected by heavy equipment used for skidding but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based skidding on site disturbance and soil physical properties. We also tested the effects of skid trail slope and traffic frequency on soil compaction, total porosity, and moisture content. On average, about 30% of all harvested area was disturbed to varying levels. Intact forest floor (undisturbed) and light slash were the dominant surface conditions, covering an average of 68.9% of harvested area. Deep disturbed soils accounted for only just over 1.1% of observations. Results showed that dry bulk density, total porosity and moisture content were affected considerably on skid trails by traffic frequency and skid trail slope. Measurements of soil properties in the surface layer (0–10 cm) showed that bulk density is 57% higher and total porosity is 31% lower on the skid trail compared to the undisturbed area. Average moisture content has been measured as 35% on the skid trail versus 47% in the undisturbed area.  

2018 ◽  
pp. 1-9
Author(s):  
Bassey Etim Udom ◽  
Joy Ehilegbu

Soil compaction affects soil fertility through increasing bulk density and soil strength. It also decreases infiltration rate, total porosity and amount of water stored in the root zone for crop use. In this study, we evaluated the optimum moisture contents (OMC) in relation to maximum dry density (MDD) and compaction of cultivated and uncultivated soils. The study was carried out on four land use types viz: uncultivated: Velvet tamarind (Dialium quineese), rubber plantation (Hevea brasiliensis) and cultivated: 5-year fallow and 10-year continuous cultivated soil to maize crop. Proctor test for the maximum dry density-moisture content relationship was carried out, including some hydraulic and structural properties of the soil, and their effect soil compaction. Results showed that optimum moisture content (OMC) for compaction relate to the maximum dry density (MDD).  In which case, dry density increased with water content to a maximum and decrease as moisture content increased above the optimum. Soil organic matter (SOM) content and particle size distribution highly affected the MDD and OMC. The MDD and OMC were: 1.92 g cm-3 and 10.4%, 1.95 g cm-3 and 11.2%, 1.91 g cm-3 and 12.3%, and 1.87 g cm-3 and 12.8% for velvet tamarind, 5-year fallow, CC and rubber plantation soils respectively, at 0-15 cm depth. Changes in field bulk densities at similar depths were in the order of velvet tamarind < rubber < 5-year fallow < CC. There were highly significant (p < 0.01) relationships between MDD, total porosity, Ksat and SOM and negative relationships between these parameters and OMC. Thus, continuous cultivation increased MDD and reduced OMC for compaction. Two- season fallow periods with legume could improve soil hydraulic properties and maintain the MDD of sandy soils at minimum.  


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 771 ◽  
Author(s):  
Rodolfo Picchio ◽  
Farzam Tavankar ◽  
Mehrdad Nikooy ◽  
Giuseppe Pignatti ◽  
Rachele Venanzi ◽  
...  

The Caspian forests of Iran were monitored and evaluated for forest natural regeneration after logging activities for more than a decade. This large area has a substantial ecological, environmental and socio-economic importance. Ground based skidding is the most common logging method in these forests and soil compaction is the most critical consequence of this method. One of the current main topics and important emerging issue in forest research of the last decade are discussed in this study. Soil compaction has major influences on growth and/or mortality rates of forest seedlings. This study has lasted for over ten years so as to have a clear overview related to forest natural regeneration after logging activities. We monitored and evaluated physical soil properties (bulk density, penetration resistance and total porosity) and their effects on maple and beech seedlings on 10-year-old skid trails in the Iranian Caspian forests. Results obtained from evaluating the impact of skid trails within the aforementioned three soil physical parameters were significant; bulk density increased by 12.6% on log skidded routes (between two skidder tires on skid trail) and 36.1% on tire tracks, compared to non-skid trails (1.19 g/cm3), penetration resistance increased by 68% on log skidded routes and 220% on tire tracks, compared to non-skid trails (0.25 MPa), total porosity decreased by 12.8% on log skidded routes and 30.9% on tire tracks, compared to non-skid trails (54%). Among the morphological parameters, lateral root length (LRL) and root penetration depth (RPD) showed the highest decrease at soil compaction compared to the control (decrease in LRL: 60% in maple and 44% in beech; decrease in RPD: 56% in both maple and beech); the main response of growth parameters to soil compaction was found in roots (decrease in dry mass of 36% both in maple and beech); architectural parameters were also influenced by soil compaction, and the response of both seedling species was more evident in the ratio of main root to stem length (RRS) (reduction in RRS 42% in maple, 33% in beech); the ratio of RPD to main root length (RPL) also showed a great reduction (reduction in RPL 20% in maple 33% in beech). Physical soil properties, changes in other environmental properties of skid trails, created differences in beech and maple seedling growth between the skid trails and non-skid trails. This was closely related to the physiological characteristics of the two species studied. Beech seedlings reacted well to a moderate uncovering but they needed little disturbed soil, even if there was a very mixed bedding. Maple seedlings reacted better than beech seedlings to the uncovering and soil disturbance. The effects of the skid trail on morphology, growth and architecture of maple seedlings in the Hyrcanian beech forests showed that the maple, as a seedling, is a suitable species for maintaining the physical properties of skid trails after logging operations in the beech stands in the Caspian forests of Iran.


Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


2011 ◽  
Vol 6 (No. 2) ◽  
pp. 73-82 ◽  
Author(s):  
S.E. Obalum ◽  
J.C. Nwite ◽  
J. Oppong ◽  
C.A. Igwe ◽  
T. Wakatsuki

One peculiar feature of the inland valleys abundant in West Africa is their site-specific hydrology, underlain mainly by the prevailing landforms and topography. Development and management of these land resources under the increasingly popular sawah (a system of bunded, puddled and levelled rice field with facilities for irrigation and drainage) technology is a promising opportunity for enhancing rice (Oryza sativa L.) production in the region. Information on the variations in selected soil physical properties as influenced by the prevailing landforms may serve as a useful guide in site selection. This is of practical importance since majority of the inland valleys are potentially unsuitable for sawah development and most farmers in the region are of low technical level. Three landforms (river levee, elevated area and depressed area) were identified within a sawah field located in an inland valley at Ahafo Ano South District of Ghana. Each of these landforms was topsoil-sampled along on identified gradient (top, mid and bottom slope positions). Parameters determined included particle size distribution, bulk density, total porosity and field moisture content. The soil is predominantly clayey. There were no variations in the particle size distribution among the slope positions in the river levee. Overall, the river levee had lower silt content than the elevated and the depressed landforms. The bulk density, total porosity, and gravimetric moisture content indicated relative improvements only in the depressed area in the order, bottom &gt; mid &gt; top slope. Irrespective of slope position, the three landforms differed in these parameters in the order, depressed &gt; river levee &gt; elevated. The sand fraction impacted negatively on the silt fraction and bulk density of the soil, both of which controlled the soil moisture status. Despite the fairly low silt content of the soil, the silt fraction strongly influenced the gravimetric moisture content (R<sup>2</sup> = 0.80). So too did the soil bulk density on the gravimetric moisture content (R<sup>2</sup> = 0.90). It is concluded that: (1) since the landforms more prominently influenced the measured parameters than the slope positions, the former should take pre-eminence over the latter in soil suitability judgment; (2) with respect to moisture retention, variations in silt fraction and bulk density of this and other clayey inland-valley soils should be used as guide in site selection for sawah development.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


2002 ◽  
Vol 82 (1) ◽  
pp. 1-8 ◽  
Author(s):  
N. T. Donkor ◽  
J. V. Gedir ◽  
R. J. Hudson ◽  
E. W. Bork ◽  
D. S. Chanasyk ◽  
...  

Livestock trampling impacts have been assessed in many Alberta grassland ecosystems, but the impacts of animal trampling on Aspen Boreal ecosystems have not been documented. This study compared the effects of high intensity [4.16 animal unit month per ha (AUM) ha-1] short-duration grazing (SDG) versus moderate intensity (2.08 AUM ha-1) continuous grazing (CG) by wapiti (Cervus elaphus canadensis) on soil compaction as measured by bulk density at field moist condition (Dbf) and penetration resistance (PR). Herbage phytomass was also measured on grazed pastures and compared to an ungrazed control (UNG). The study was conducted at Edmonton, Alberta, on a Dark Gray Luvisolic soil of loam texture. Sampling was conducted in the spring and fall of 1997 and 1998. Soil cores were collected at 2.5-cm intervals to a depth of 15-cm for measurement of bulk density (Dbf) and moisture content. Penetration resistance to 15 cm at 2.5-cm intervals was measured with a hand-pushed cone penetrometer. The Dbf and PR of the top 10-cm of soil were significantly (P ≤ 0.05) greater by 15 and 17% under SDG than CG, respectively, by wapiti. Generally, Dbf in both grazing treatments decreased over winter at the 0-7.5 cm and 12.5-15 cm depths, suggesting that freeze-thaw cycles over the winter alleviated compaction. Soil water content under SDG was significantly (P < 0.05) lower than CG. Total standing crop and fallen litter were significantly (P ≤ 0.05) greater in CG treatment than the SDG. The SDG treatment had significantly (P ≤ 0.05) less pasture herbage than CG areas in the spring (16%) and fall (26%) of 1997, and in the spring (22%) and fall (24%) of 1998, respectively. The SDG did not show any advantage over CG in improving soil physical characteristics and herbage production. Key Words: Bulk density, Cervus elaphus, moisture content, penetration resistance, pasture production


2014 ◽  
pp. 109-113
Author(s):  
Lilla Szűcs ◽  
Géza Tuba ◽  
József Zsembeli

The effect of PRP-SOL soil conditional on soil compaction, moisture content and bulk density is studied in a long-term soil cultivation experiment from 1997 on a heavy textured meadow chernozem soil, in reduced and conventional tillage at Karcag Research Institute. Our investigations were made in the vegetation period of corn, in June and after harvesting, on stubble. Soil compaction was measured with a penetrometer, the actual moisture content was determined by gravimetric method. The bulk density values of the regularly cultivated soil layer of 0–10 and 10–20 cm depths were defined from undisturbed soil samples. We established that after 3 years the application of the soil conditioner has positive effect on soil compaction and moisture status of the top layer in the reduced tillage system. We could not figure out this positive effect in the case of conventional tillage.


2015 ◽  
Vol 24 (3) ◽  
pp. e038 ◽  
Author(s):  
Michal Allman ◽  
Martin Jankovský ◽  
Valéria Messingerová ◽  
Zuzana Allmanová ◽  
Michal Ferenčík

<p><em>Aim of study: </em>The primary objective of this paper was to compare the effects of different types of forestry machine chassis on the compaction of the top layers of soil and to define the soil moisture content level, at which machine traffic results in maximum compaction.</p><p><em>Area of study:</em> Measurements were conducted in eight forest stands located in Slovakia and the Czech Republic. The soil types in the stands subjected to the study were luvisols, stagnosols, cambisols, and rendzinas.</p><p><em>Material and Methods:</em> The measurements were focused on tracked and wheeled (equipped with low pressure tyres) cut-to-length machines, and skidders equipped with wide and standard tyres. The bulk density of soil was determined from soil samples extracted from the ruts, the centre of the skid trail, and the undisturbed stand. To determine soil moisture content, at which the soil is the most susceptible to compaction, the Proctor standard test was employed.</p><p><em>Main results:</em> The moisture content for maximal compaction fluctuated from 12% to 34.06%. Wheeled machines compacted the soil to 1.24 – 1.36 g.cm<sup>-3</sup> (30.3 – 35.4 % compaction) in dried state. Bulk density of soil in stands where tracked machine operated was lower, ranging from 1.02 to 1.06 g.cm<sup>-3</sup> (25.3 % compaction).</p><p><em>Research highlights:</em> All wheeled machines caused the same amount of soil compaction in the ruts, despite differences in tyres, machine weight, etc. Maximum compaction caused by forestry machines occurred at minimal moisture contents, easily achievable in European climatic conditions.  </p><p><strong>Keywords:</strong> soil compaction; bulk density; soil moisture content limits; cut-to-length machines; skidders.</p>


Author(s):  
Utin U. E ◽  
Essien G. E

A study was conducted to determine the effects of slope position and fertilizer type on soil properties and growth of maize (Zea mays) on Coastal Plain Sands of Akwa Ibom State, Nigeria. Results obtained showed that soils of lower slope (LS) had the highest contents of clay and silt compared with those of upper slope (US) position. Bulk density of the upper slope soil and that of the middle slope (MS) soils were significantly higher (P≤0.05) than that of LS soil and subsequently, total porosity and saturated hydraulic conductivity (Ksat) increased downslope. Bulk density of soils that received poultry manure (PM) and NPK+PM were significantly reduced compared to those of NPK and control while total porosity and Ksat of soils that received PM and NPK+PM were significantly higher (P≤0.05) than those of NPK and control. Soils of LS had highest pH, organic carbon, total nitrogen, available phosphorus, ECEC compared to those of MS and US. The application of poultry manure yielded increase in soil pH, soil organic carbon, total nitrogen, available phosphorus and ECEC when compared to soils of NPK and control. Growth of maize obtained with LS were consistently higher than those of the MS and US soils. Soils of LS that received NPK and NPK+PM had consistently similar maize growth, higher than other combinations of slope position and fertilizer type. The complementary application of poultry manure and NPK 15:15:15 can be the best option for increasing the fertility of soils with varying slope positions on Coastal Plain Sands.


2020 ◽  
Vol 5 (01) ◽  
pp. 1-15
Author(s):  
Abdel-Aal M. H.

A field experiment was carried out during the early summer seasons of 2018, at Agricultural Research Centre (ARC) Giza, Egypt. This study aims to examine the effect of three tillage treatments under three different moisture contents on some soil properties and on maize crop production. The experiments included three moisture contents of (MC1, 27.2 %), (MC2, 15.4 %) and (MC3, 7.2 %); as well as three tillage treatments, no-tillage control (NT), minimum tillage (MT) and conventional tillage (CT). The experimental was laid out in split-split plot design with four replications. The results showed that, there was significant effect of tillage at different moisture levels on soil physical and chemical properties. It was also indicated that the effect of tillage practices was significantly on soil bulk density, total porosity, hydraulic conductivity and moisture constants, where the conventional tillage at soil moisture level 15.4% (MC2) helped in improving soil bulk density, hydraulic conductivity and total porosity. Soil organic C, cations exchange capacity CEC, available N, P and K were improved in the soil surface layer of NT and decreased with depth. Clod mean weight diameter of soil was improved with 15.4-% of soil moisture content regardless of tillage depth and enhanced root proliferation by increasing density roots compared with minimum and no tillage in maize plant. The grain yields of maize were improving more under conventional tillage at moisture content 15.4% compared with other treatments. It was found that plant height and roots value increased by using conventional tillage compared with other tillage treatments.


Sign in / Sign up

Export Citation Format

Share Document