Row Spacing and Seeding Rate Studies in No-Till Winter Wheat for the Northern Great Plains

jpa ◽  
1999 ◽  
Vol 12 (4) ◽  
pp. 624-629 ◽  
Author(s):  
Guy P. Lafond ◽  
Yantai Gan
Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


1991 ◽  
Vol 5 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Gail A. Wicks ◽  
Robert N. Klein

We conducted research to determine if soybeans can be grown successfully in a no-till environment, in the semi-arid areas of the central Great Plains near North Platte, NE. Soybeans planted no-till into winter wheat stubble that was sprayed with glyphosate yielded more than when planted into soil that was rototilled in a winter wheat-soybean-fallow rotation. However, grain yield averaged only 420 kg ha-1during 1975, 1976, and 1977. No-till soybean grown in a winter wheat-grain sorghum-soybean rotation during 1982 through 1985 yielded an average of 1370 kg ha-1. Low yields were associated with lack of precipitation during the fallow period after winter wheat harvest or grain sorghum harvest and during the soybean pod elongation and filling period. Several herbicides gave excellent weed control in soybeans when applied either after wheat harvest, early preplant, or at planting time. None of the herbicides persisted long enough to reduce grain yields of winter wheat planted into the soybean residue. With present production costs these nonirrigated rotations are not economical in the semi-arid region of the central Great Plains of the United States.


1985 ◽  
Vol 77 (2) ◽  
pp. 211-214 ◽  
Author(s):  
K. D. S. M. Joseph ◽  
M. M. Alley ◽  
D. E. Brann ◽  
W. D. Gravelle

1991 ◽  
Vol 5 (4) ◽  
pp. 707-712 ◽  
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper ◽  
John B. Solie ◽  
Stanley G. Solomon

Field experiments were conducted in Oklahoma to determine the effects of winter wheat seeding date and cheat infestation level on cultural cheat control obtained by increasing winter wheat seeding rates and decreasing row spacing. Seeding rate and row spacing interactions influenced cheat density, biomass, or seed in harvested wheat (dockage) at two of three locations. Suppressive effects on cheat of increasing wheat seeding rates and reduced row spacings were greater in wheat seeded in September than later. At two other locations, increasing seeding rate from 67 to 101 kg ha–1or reducing row spacings from 22.5 to 15 cm increased winter wheat yield over a range of cheat infestation levels.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 538-544 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

In 2007, leaf rust of wheat was severe throughout the Great Plains region of North America. Yield losses in wheat due to leaf rust were estimated to be 14% in Kansas. Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State in order to determine the virulence of the wheat leaf rust population in 2007. Single uredinial isolates (868 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, and Lr28, and on winter wheat lines with genes Lr41 and Lr42. Fifty-two virulence phenotypes were found. Virulence phenotypes TDBJG, MFPSC, and TDBJH were among the four most common phenotypes and were all virulent to resistance gene Lr24. These phenotypes were found throughout the Great Plains region. Phenotype MLDSD, with virulence to Lr9, Lr17, and Lr41, was also widely distributed in the Great Plains. In the soft red winter wheat region of the southeastern states, phenotypes TCRKG, with virulence to genes Lr11, Lr26, and Lr18, and MFGJH, with virulence to Lr24, Lr26, and Lr11, were among the common phenotypes. Virulence phenotypes with virulence to Lr16 were most frequent in the spring wheat region of the northern Great Plains. Virulence phenotypes with virulence to Lr11, Lr18, and Lr26 were most common in the soft red winter areas of the southeastern states and Ohio Valley. Virulence to Lr21 was not found in any of the tested isolates.


2000 ◽  
Vol 92 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Tracey L. Henderson ◽  
Burton L. Johnson ◽  
Albert A. Schneiter

Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1060-1065 ◽  
Author(s):  
Z. Miller ◽  
F. Menalled ◽  
D. Ito ◽  
M. Moffet ◽  
M. Burrows

Plant genotype, age, size, and environmental factors can modify susceptibility and tolerance to disease. Understanding the individual and combined impacts of these factors is needed to define improved disease management strategies. In the case of Wheat streak mosaic virus (WSMV) in winter wheat, yield losses and plant susceptibility have been found to be greatest when the crop is exposed to the virus in the fall in the central and southern Great Plains. However, the seasonal dynamics of disease risk may be different in the northern Great Plains, a region characterized by a relatively cooler fall conditions, because temperature is known to modify plant–virus interactions. In a 2-year field study conducted in south-central Montana, we compared the impact of fall and spring WSMV inoculations on the susceptibility, tolerance, yield, and grain quality of 10 winter wheat varieties. Contrary to previous studies, resistance and yields were lower in the spring than in the fall inoculation. In all, 5 to 7% of fall-inoculated wheat plants were infected with WSMV and yields were often similar to uninoculated controls. Spring inoculation resulted in 45 to 57% infection and yields that were 15 to 32% lower than controls. Although all varieties were similarly susceptible to WSMV, variations in tolerance (i.e., yield losses following exposure to the virus) were observed. These results support observations that disease risk and impacts differ across the Great Plains. Possible mechanisms include variation in climate and in the genetic composition of winter wheat and WSMV across the region.


2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return


Sign in / Sign up

Export Citation Format

Share Document