Evidence for a Trifluralin‐Potassium Nitrate Interaction Affecting Tomato Seedling Growth 1

Crop Science ◽  
1973 ◽  
Vol 13 (4) ◽  
pp. 489-490 ◽  
Author(s):  
L. W. Barnes ◽  
D. R. Krieg
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


2003 ◽  
Vol 83 (4) ◽  
pp. 729-735 ◽  
Author(s):  
M. A. Matus-Cádiz ◽  
P. Hucl

An effective dormancy-breaking method may be of interest to wheat (Triticum aestivum L.) breeders selecting for increased seed dormancy prior to advancing their populations in greenhouse grow-outs. The objective of this study was to identify an effective pre-treatment for breaking dormancy in wheat that did not result in seedling etiolation. In 2000, eight dormant (W98616, line 211, EMDR-4, EMDR-9, EMDR-14, RL4137, Columbus, and AC Domain) and one nondormant line (Roblin) were grown at two locations in Saskatchewan. Seeds were: (i) stored for zero to 21 wks at 24°C before incubating at 20°C for 7 d; (ii) incubated at 5, 10, 15, 20, and 25°C for 14 d; and (iii) treated with gibberellic acid (GA3) (0.0006 and 0.0014 M), potassium nitrate (KNO3) (0.01 and 0.02 M), chilling, heating, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 before incubating at 10°C for 14 d. Seedling growth was observed in a duplicated growth chamber experiment. Seedling length, first inter-node length, and biomass yield data were collected from plants grown from seeds treated with four effective pretreatments. Data were subjected to an ANOVA. Six to 18 weeks of storage at 24°C were required to break the dormancy (≥ 95% germination) in dormant genotypes. Incubation at 10°C was the most effective temperature for promoting germination in dormant seeds after 10d of testing. Four pre-treatments including 0.0006 M GA3, 0.0014 M GA3, chilling with 0.01 M KNO3, and heating with 0.01 M KNO3 led to ≥ 95% germination within 10 d of testing. Only GA3 treatments were associated with etiolated seedling growth. Heating with 0.01 M KNO3 or chilling with 0.01 M KNO3, applied before incubating at 10°C in darkness, may be of interest to breeders selecting for increased dormancy before advancing breeding populations in greenhouse grow-outs. Key words: Triticum, dormancy, nitrate, chilling, heating, etiolated seedling


Author(s):  
Jason J. Danaher ◽  
Jeremy M. Pickens ◽  
Jeffrey L. Sibley ◽  
Jesse A. Chappell ◽  
Terrill R. Hanson ◽  
...  

2009 ◽  
Vol 157 (10) ◽  
pp. 2737-2742 ◽  
Author(s):  
Shujie Zhang ◽  
Feng Hu ◽  
Huixin Li ◽  
Xiuqiang Li

2012 ◽  
Vol 1 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Manoj Kumar Gupta ◽  
Pitam Chandra ◽  
D. V. K. Samuel ◽  
Balraj Singh ◽  
Awani Singh ◽  
...  

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 684b-684
Author(s):  
Albert Liptay

Air circulation, generally an integral part of environmentally-controlled plant growth chambers, retarded tomato (Lycopersicon lycopersicum Karstens) seedling growth seismomorphogenetically. Continuous air movement at a speed of 0.5 to 0.7 m·s-1 inhibited growth by about 40%. Growth inhibition was noticeable with as little as 15 min of daily exposure to the air circulation; a continuous exposure gave the greatest amount of growth inhibition. The retarding effect of air on seedling growth was transient and required a continued daily exposure to air movement. Continuous aeration of seedlings inhibited growth to such an extent that in a two factor experiment, ie aeration and water stress, the water stress effects were completely masked in the aerated chamber by the aeration effect. The results have important implications for plant growth experiments in chambers equipped with air circulation: seedling growth may be affected more by the air circulation in the growth chamber than by an experimental treatment.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 768-772 ◽  
Author(s):  
Juan P. Brigard ◽  
Richard L. Harkess ◽  
Brian S. Baldwin

Tomato seedling hypocotyls elongate rapidly after germination resulting in weak seedlings. The effects of 0, 250, 500, 750, or 1000 mg paclobutrazol (PB)/L seed soak and soaking times from 1 to 12 hours on tomato (Solanum lycopersicum L.) seed germination, seedling growth, and plant growth were tested. Adequate height control was obtained with 250 mg PB/L while soaking time did not affect seedling growth. In a second experiment, PB was tested at 0, 50, 100, 150, 200, or 250 mg PB/L soaking the seed for 1 hour. A concentration of PB at 100 mg·L–1 provided optimum control of hypocotyl elongation with minimal residual effect on subsequent plant growth. In a third experiment, seed soaked at the different PB concentrations were germinated and grown under light intensities of 0.09, 50, 70, or 120 μmol·m–2·s–1. Seedlings grown under 0.09 μmol·m–2·s–1 were not affected by PB treatment and did not develop an epicotyl. PB seed soak treatment gave greater growth suppression under 50 μmol·m-2·s-1 than under the two higher light levels. Soaking tomato seeds in 100 mg PB/L for 1 hour prevented early hypocotyl stretch of tomato seedlings with no long term effects on plant growth. This treatment effectively prevented excessive hypocotyl elongation when seeds were germinated under low PAR while not over controlling elongation under high PAR conditions.


1994 ◽  
Vol 8 (3) ◽  
pp. 285-290 ◽  
Author(s):  
A. R. Al‐Harbi ◽  
A. M. Al‐Omran ◽  
H. Wahdan ◽  
A. A. Shalaby

Sign in / Sign up

Export Citation Format

Share Document