Genotypic Responses in Sorghum to Drought Stress. III. Free Proline Accumulation and Drought Resistance 1

Crop Science ◽  
1976 ◽  
Vol 16 (3) ◽  
pp. 428-431 ◽  
Author(s):  
A. Blum ◽  
Adelina Ebercon
2020 ◽  
Vol 19 (3) ◽  
pp. 159-165
Author(s):  
Peter Ferus ◽  
Dominika Bošiaková ◽  
Jana Konôpková ◽  
Peter Hoťka

Rhododendrons in numerous gardens in Central Europe are frequently endangered by adverse summer drought periods associated with the climate change. Therefore, in this work drought-resistance strategies in recent genotypes of these highly aesthetic shrubs were investigated. Dehydrated Rhododendron groenlandicum ‘Helma’, R. obtusum ‘Michiko’ and R. hybridum ‘Polarnacht’ showed high initial stomatal conductances (gS), after few days steeply falling to the stable minimum at ca. 20, 85 and 70% leaf relative water content (RWC), respectively. Except of ‘Polarnacht’, they had relatively large specific leaf area and ‘Michiko’ also free proline accumulation. On the other hand, R. repens ‘Scarlet Wonder’ and R. hybridum ‘Red Jack’ started with half gS values, continuously declining 1.5–2 fold longer compared to the first group of genotypes (RWC of ca. 60 and 75%, respectively). Both produced relatively thick leaves but did not show any osmotic adjustment. Among observed drought-resistance strategies, lower and longer period active transpiration with stomata sensitive to the water loss, as found in R. repens ‘Scarlet Wonder’ and R. × hybridum ‘Red Jack’, were accepted as the most effective for drought-affected rhododendron plantations.


2005 ◽  
Vol 56 (417) ◽  
pp. 1975-1981 ◽  
Author(s):  
Mika Yamada ◽  
Hiromasa Morishita ◽  
Kaoru Urano ◽  
Noriko Shiozaki ◽  
Kazuko Yamaguchi-Shinozaki ◽  
...  

2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


2021 ◽  
Author(s):  
Yang Cao ◽  
fei song ◽  
Xingtang Zhao ◽  
Liming He ◽  
Yaguang Zhan

Abstract Background: In this study, sodium nitrate (SNP, a donor of nitric oxide) and methyl jasmonate (MJ) were used as exogenous hormones. The experiment was conducted with the offspring (interspecific hybrid) D110 of ash and ash, and their respective parents (non-interspecific hybrid) D113 and 4-3 as experimental materials. The experiment set up three experimental groups of drought stress, exogenous hormone SNP and MJ, and a control group under normal growth (non-drought stress), to study the physiological indicators and gene expression of manchurian ash. Result: The results showed that under drought stress and exogenous application of hormone SNP or MJ, there were significant differences between hybrids and parents in plant growth, photosynthesis, defense enzyme activity, hormone content and gene expression.Conclusions: This experiment provides a new theoretical support for the existing hormone breeding methods of manchurian ash, which can improve the drought resistance of manchurian ash and increase its survival rate in the wild. Increasing the growth rate and breeding efficiency of manchurian ash brings new ideas.


Crop Science ◽  
1979 ◽  
Vol 19 (4) ◽  
pp. 489-493 ◽  
Author(s):  
A. D. Hanson ◽  
C. E. Nelsen ◽  
A. R. Pedersen ◽  
E. H. Everson

2020 ◽  
Author(s):  
Shipeng Yang ◽  
Lihui Wang ◽  
Qiwen Zhong ◽  
Guangnan Zhang ◽  
Haiwang Zhang ◽  
...  

Abstract Background Jerusalem artichoke (Helianthus tuberosus L.) is a highly stress-resistant crop, especially it grows normally in the desertified land of Qinghai-Tibet Plateau in the past two years, and has become a crop with agricultural, industrial and ecological functions. However, there are few studies on drought resistance of Jerusalem artichoke at present, and studies on the mechanisms of stress resistance of Jerusalem artichoke breeding and fructan are seriously lagging behind. In this study, we selected two differentially resistant cultivars for drought stress experiments with different concentration gradients, the aim was finding DEGs and metabolic pathways associated with drought stress. Results Based on an additional analysis of the metabolic pathways under drought stress using MapMan, the most different types of metabolism included secondary metabolism, light reaction metabolism and cell wall. As a whole, QY1 and QY3 both had a large number of up-regulated genes in the flavor pathway. It was suggested that flavonoids could help Jerusalem artichoke to resist drought stress and maintain normal metabolic activities. In addition, the gene analysis of the abscisic acid (ABA) key metabolic pathway showed that QY3 had more genes in NAC and WRKY than QY1, but QY1 had more genes in response to drought stress as a whole. By combining RNA-Seq and WGCNA, a weighted gene co-expression network was constructed and divided into modules. By analyzing specifically the expressed modules, four modules were found to have the highest correlation with drought. Further research on the genes revealed that all 16 genes related to histone, ABA and protein kinase had the highest significance in these pathways. Conclusions These findings represent the first RNA-Seq analysis of drought stress in Jerusalem artichoke, which is of substantial significance to explore the function of drought resistance in Jerusalem artichoke and the excavation of related genes.


Sign in / Sign up

Export Citation Format

Share Document