Response of Interspecific Hybrid Species of Manchurian Ash to MJ and NO Signals and Preliminary Study on the Formation Mechanism of Drought Resistance Advantage

Author(s):  
Yang Cao ◽  
fei song ◽  
Xingtang Zhao ◽  
Liming He ◽  
Yaguang Zhan

Abstract Background: In this study, sodium nitrate (SNP, a donor of nitric oxide) and methyl jasmonate (MJ) were used as exogenous hormones. The experiment was conducted with the offspring (interspecific hybrid) D110 of ash and ash, and their respective parents (non-interspecific hybrid) D113 and 4-3 as experimental materials. The experiment set up three experimental groups of drought stress, exogenous hormone SNP and MJ, and a control group under normal growth (non-drought stress), to study the physiological indicators and gene expression of manchurian ash. Result: The results showed that under drought stress and exogenous application of hormone SNP or MJ, there were significant differences between hybrids and parents in plant growth, photosynthesis, defense enzyme activity, hormone content and gene expression.Conclusions: This experiment provides a new theoretical support for the existing hormone breeding methods of manchurian ash, which can improve the drought resistance of manchurian ash and increase its survival rate in the wild. Increasing the growth rate and breeding efficiency of manchurian ash brings new ideas.

2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.


2021 ◽  
Author(s):  
Shifa Xiong ◽  
Yangdong Wang ◽  
Yicun Chen ◽  
Ming Gao ◽  
Yunxiao Zhao ◽  
...  

Abstract Background: Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. In recent years, with the global warming caused by the greenhouse effect, seedlings in mountainous areas after afforestation often suffer seasonal drought stress, which seriously affects their survival and growth. In order to ensure the survival of seedlings, we need to select oak species with strong drought resistance. Therefore, we first need to understand the differences in drought resistance of the four oak tree species at the seedling stage, and comprehensively evaluate their drought resistance capabilities by studying the changes in the physiological and biochemical characteristics of the seedlings under continuous drought and rehydration conditions.Methods: The four oak seedlings were divided into drought-rewatering treatment group and normal watering control group. For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering and recovering for 5 days. The water parameters, osmotic adjustment substance content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Principal component analysis, correlation analysis and membership function were used to analyze the physiological and biochemical characteristics of the seedlings of the four oak in two groups.Results and conclusions: Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by PCA, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima.


2020 ◽  
Author(s):  
Mozhgan Saeid nejad ◽  
monirsadat Nematollahi ◽  
Farokh Abazari ◽  
Abdoali Mortazavi

Abstract Background: The incidence of pain in ill infants hospitalized in the neonatal ward is unavoidable.. The aim of the present study was to compare the effects of two methods of breastfeeding and oral glucose 10% on the severity of venipuncture-induced pain and physiological indicators in infants hospitalized in the neonatal ward of Seyyed Al-Shohada Hospital in Kerman in 2019.Methods: The present study is a clinical trial study with three groups and with a pre-test and a post-test. It was conducted on 120 neonates who met the inclusion criteria. Infants were selected by a convenient sampling method, and they were randomly divided into three groups. The study instruments included a neonatal demographic questionnaire, and neonatal infant pain scale and a checklist for recording physiological indicators. Then, the data were analyzed using SPSS25 software.Results: The results of the study showed that the mean score of pain severity before the intervention was the same and zero in the three groups (P > 0.05), but during venipuncture and after that, a statistically significant difference was observed among three groups (P < 0.05). The highest mean pain during venipuncture was observed in the control group (86.95) and the lowest mean pain was observed in the breastfeeding intervention group (35.91). After venipuncture, the lowest mean pain was observed in the breastfeeding intervention group (40.40). Also, there was no significant difference between the mean physiological indicators (temperature and heart rate) in different stages of the venipuncture (before, during, and after) in three groups (P > 0.05).Conclusion: Based on the results of the study, breastfeeding is more effective than oral glucose 10% in reducing the severity of infant pain during venipuncture. Breastfeeding is an easy and inexpensive and available method that can be easily implemented with proper training for the mother and it can be used as a method of reducing infant pain by nurses in neonatal intensive care units to ensure the normal growth and development of the infant and prevent the physical effects and discomfort of infants.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Fuqiang Yin ◽  
Ming Liu ◽  
Jian Gao ◽  
Wenyou Zhang ◽  
Cheng Qin ◽  
...  

AbstractTobacco (Nicotiana tabacum L.) is an economically important and relatively drought-tolerant crop grown around the world. However, the molecular regulatory mechanisms involved in tobacco root development in response to drought stress are not wellknown. To gain insight into the transcriptome dynamics associated with drought resistance, genome-wide gene expression profiling of roots from a tobacco cultivar (Honghua Dajinyuan, a major flue-cured tobacco cultivar in Southwest China) under 20% PEG6000 treatment for 0, 6 h and 48 h were conducted using Solexa sequencing (Illumina Inc., San Diego, CA, USA). Over five million tags were generated from tobacco roots, including 229,344, 221,248 and 242,065 clean tags in three libraries, respectively. The most differentially expressed tags, with either log2FC > 2.0 for up-regulated genes or log2FC < -2.0 for down regulated genes (p < 0.001), were analyzed further. In comparison to the control, 1476 up-regulated and 1574 down-regulated differentially expressed genes (DEGs) were identified, except for unknown transcripts, which were grouped into 43 functional categories involved in seven significant pathways. The most enriched categories were those that were populated by transcripts involved in metabolism, signal transduction and cellular transport. Many genes and/or biological pathways were found to be common among the three libraries, for example, genes participating in transport, stress response, auxin transport and signaling, etc. Next, the expression patterns of 12 genes were assessed with quantitative real-time PCR, the results of which agreed with the Solexa analysis. In conclusion, we revealed complex changes in the transcriptome during tobacco root development related to drought resistance, and provided a comprehensive set of data that is essential to understanding the molecular regulatory mechanisms involved. These data may prove valuable in future studies of the molecular mechanisms regulating root development in response to drought stress in tobacco and other plants.


2019 ◽  
Author(s):  
Pengqian Zhang ◽  
Jiade Bai ◽  
Yanju Liu ◽  
Yuping Meng ◽  
Zheng Yang ◽  
...  

Abstract10 species’ drought resistance cases have been studied, including Paeonia lactiflora, Hemerocallis dumortieri, Physostegia virginiana, Iris lacteal, Hylotelephium erythrostictum, Sedum lineare, Iris germanica, Cosmos bipinnata, Hosta plantaginea and Dianthus barbatus. By researching these drought resistance cases, a suggestion can be given for roof greening. This research sets 3 drought stress scenarios by controlling the soil relative water content (RWC), including moderately drought stress (40%±2% < RWC < 45%±2%), strong drought stress (RWC < 30%±2%) and control group (RWC > 75%±2%). After the seedlings survived the drought stress, the damaging rate of permeability (DRP), total chlorophylls concentrations (Chl), superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (AsAPOD) of seedlings will be measured. Finally, a subordinate function method was applied to assess these species’ drought resistance. Cosmos bipinnata and Physostegia virginiana was dead after having suffered with moderately drought stress and strong drought stress, respectively. Although other species survived, the individual variation was huge especially for physiological and biochemical index. Hemerocallis dumortieri, Iris lactea and Hosta plantaginea’s DRP had little change when they lived in the normal water condition and suffered with drought stress. Most of the species (except Paeonia lactiflora and Sedum lineare) showed a lower SOD activity during moderately drought stress compared with the sufficient soil water condition and strong drought stress condition. The changes of plants’ POD activity and AsAPOD activity are very similar: when drought stress enhanced, the activity of protect enzyme reduced. According to the subordinate function method, the order of plants’ resistance to the drought is as follow: Hosta plantaginea > Sedum lineare > Iris germanica > Hemerocallis dumortieri > Iris lactea >Hylotelephium erythrostictum > Dianthus barbatus > Paeonia lactiflora > Physostegia virginiana > Cosmos bipinnata.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianping Liu ◽  
Xinjiao Sun ◽  
Wencheng Liao ◽  
Jianhua Zhang ◽  
Jiansheng Liang ◽  
...  

Abstract Background Drought stress is one of the major abiotic stresses that restrict plant growth and development. 14–3-3 proteins have been validated to regulate many biological processes in plants. Previous research demonstrated that OsGF14b plays different roles in panicle and leaf blast resistance. In this study, we researched the function of OsGF14b in drought resistance in rice. Findings Here, we report that OsGF14b was strongly induced by soil drought stress. In comparison with wild type (WT), the osgf14b mutant exhibited improved resistance to drought and osmotic stress by changing the content of stress-relevant parameters, complementation of the osgf14b mutant restored the drought sensitivity to WT levels, whereas the OsGF14b-overexpression lines exhibited enhanced sensitivity to drought and osmotic stress. The osgf14b mutant plants were hypersensitive to abscisic acid (ABA), while the OsGF14b-overexpression plants showed reduced sensitivity to ABA. Furthermore, mutation and overexpression of OsGF14b affected the expression of stress-related genes under normal growth conditions and/or drought stress conditions. Conclusions We have demonstrated that OsGF14b is involved in the drought resistance of rice plants, partially in an ABA-dependent manner.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Youxiong Que ◽  
Liping Xu ◽  
Jianwei Lin ◽  
Jun Luo ◽  
Jingsheng Xu ◽  
...  

Erianthus arundinaceumis a wild relative species of sugarcane. The aim of this research was to demonstrate the feasibility of cDNA-SRAP for differential gene expression and to explore the molecular mechanism of drought resistance inE. arundinaceum. cDNA-SRAP technique, for the first time, was applied in the analysis of differential gene expression inE. arundinaceumunder drought stress. In total, eight differentially expressed genes with length of 185–427 bp were successfully isolated (GenBank Accession numbers: EU071770, EU071772, EU071774, EU071776, EU071777, EU071779, EU071780, and EU071781). Based on their homologies with genes in GenBank, these genes were assumed to encode ribonuclease III, vacuolar protein, ethylene insensitive protein, aerobactin biosynthesis protein, photosystem II protein, glucose transporter, leucine-rich repeat protein, and ammonia monooxygenase. Real-time PCR analysis on the expression profiling of gene (EU071774) encoding ethylene-insensitive protein and gene (EU071781) encoding ammonia monooxygenase revealed that the expression of these two genes was upregulated both by PEG and ABA treatments, suggesting that they may involve in the drought resistance ofE. arundinaceum. This study constitutes the first report of genes activated inE. arundinaceumby drought stress and opens up the application of cDNA-SRAP in differential gene expression analysis inE. arundinaceumunder certain stress conditions.


Sign in / Sign up

Export Citation Format

Share Document