scholarly journals DIVERSE STRATEGIES OF RHODODENDRON (Rhododendron sp.) GENOTYPES IN THE WATER SHORTAGE MANAGEMENT

2020 ◽  
Vol 19 (3) ◽  
pp. 159-165
Author(s):  
Peter Ferus ◽  
Dominika Bošiaková ◽  
Jana Konôpková ◽  
Peter Hoťka

Rhododendrons in numerous gardens in Central Europe are frequently endangered by adverse summer drought periods associated with the climate change. Therefore, in this work drought-resistance strategies in recent genotypes of these highly aesthetic shrubs were investigated. Dehydrated Rhododendron groenlandicum ‘Helma’, R. obtusum ‘Michiko’ and R. hybridum ‘Polarnacht’ showed high initial stomatal conductances (gS), after few days steeply falling to the stable minimum at ca. 20, 85 and 70% leaf relative water content (RWC), respectively. Except of ‘Polarnacht’, they had relatively large specific leaf area and ‘Michiko’ also free proline accumulation. On the other hand, R. repens ‘Scarlet Wonder’ and R. hybridum ‘Red Jack’ started with half gS values, continuously declining 1.5–2 fold longer compared to the first group of genotypes (RWC of ca. 60 and 75%, respectively). Both produced relatively thick leaves but did not show any osmotic adjustment. Among observed drought-resistance strategies, lower and longer period active transpiration with stomata sensitive to the water loss, as found in R. repens ‘Scarlet Wonder’ and R. × hybridum ‘Red Jack’, were accepted as the most effective for drought-affected rhododendron plantations.

Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Nasreddine Yousfi ◽  
Ines Slama ◽  
Chedly Abdelly

The aims of this study were to investigate the effect of prolonged water stress and recovery on phenology, growth, and seed yield in Tunisian contrasting populations of Medicago truncatula and Medicago laciniata . After ample irrigation for 24 days, the plants of each population were divided into two lots: the first lot was irrigated at 100% field capacity (FC), and the second at only 45% FC. After 24 days of treatment, one lot of dehydrated plants was rewatered at 100% FC, while the other was maintained at 45% FC. Interspecific and intraspecific differences were found in phenological responses to water deficit. All growth parameters were more reduced in M. truncatula populations than in M. laciniata populations. The water shortage tolerance of M. laciniata populations was associated with a lower metabolic impairment of photosynthesis and maintenance of relatively higher leaf relative water content. Seed yield was also more reduced in M. truncatula populations compared with M. laciniata populations. In M. laciniata, seed mass was a compensation mechanism to sustain seed yield under drought conditions. Seed yield variation between populations under water deficit was explained mainly by variation in seed number per plant.


2019 ◽  
Vol 40 (3) ◽  
pp. 305-320 ◽  
Author(s):  
Päivi J Väänänen ◽  
Yagil Osem ◽  
Shabtai Cohen ◽  
José M Grünzweig

Abstract In anticipation of a drier climate and to project future changes in forest dynamics, it is imperative to understand species-specific differences in drought resistance. The objectives of this study were to form a comprehensive understanding of the drought resistance strategies adopted by Eastern Mediterranean woodland species, and to elaborate specific ecophysiological traits that can explain the observed variation in survival among these species. We examined leaf water potential (𝛹), gas exchange and stem hydraulics during 2–3 years in mature individuals of the key woody species Phillyrea latifolia L., Pistacia lentiscus L. and Quercus calliprinos Webb that co-exist in a dry woodland experiencing ~ 6 rainless summer months. As compared with the other two similarly functioning species, Phillyrea displayed considerably lower 𝛹 (minimum 𝛹 of −8.7 MPa in Phillyrea vs −4.2 MPa in Pistacia and Quercus), lower 𝛹 at stomatal closure and lower leaf turgor loss point (𝛹TLP ), but reduced hydraulic vulnerability and wider safety margins. Notably, Phillyrea allowed 𝛹 to drop below 𝛹TLP under severe drought, whereas the other two species maintained positive turgor. These results indicate that Phillyrea adopted a more anisohydric drought resistance strategy, while Pistacia and Quercus exhibited a more isohydric strategy and probably relied on deeper water reserves. Unlike the two relatively isohydric species, Phillyrea reached complete stomatal closure at the end of the dry summer. Despite assessing a large number of physiological traits, none of them could be directly related to tree mortality. Higher mortality was observed for Quercus than for the other two species, which may result from higher water consumption due to its 2.5–10 times larger crown volume. The observed patterns suggest that similar levels of drought resistance in terms of survival can be achieved via different drought resistance strategies. Conversely, similar resistance strategies in terms of isohydricity can lead to different levels of vulnerability to extreme drought.


1994 ◽  
Vol 119 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Douglas S. Chapman ◽  
Robert M. Augé

Understanding physiological drought resistance mechanisms in ornamentals may help growers and landscapers minimize plant water stress after wholesale production. We characterized the drought resistance of four potted, native, ornamental perennials: purple coneflower [Echinacea purpurea (L.) Moench], orange coneflower [Rudbeckia fulgida var. Sullivantii (Beadle & Boynt.) Cronq.], beebalm (Monarda didyma L.), and swamp sunflower (Helianthus angustifolius L.). We measured a) stomatal conductance of leaves of drying plants, b) lethal water potential and relative water content, and c) leaf osmotic adjustment during the lethal drying period. Maintenance of stomatal opening as leaves dry, low lethal water status values, and ability to osmotically adjust indicate relative drought tolerance, with the reverse indicating drought avoidance. Echinacea purpurea had low leaf water potential (ψL) and relative water content (RWC) at stomatal closure and low lethal ψL and RWC, results indicating high dehydration tolerance, relative to the other three species. Rudbeckia fulgida var. Sullivantii had a similar low ψL at stomatal closure and low lethal ψL and displayed relatively large osmotic adjustment. Monarda didyma had the highest ψL and RWC at stomatal closure and an intermediate lethal ψL, yet displayed a relatively large osmotic adjustment. Helianthus angustifolius became desiccated more rapidly than the other species, despite having a high ψL at stomatal closure; it had a high lethal ψL and displayed very little osmotic adjustment, results indicating relatively low dehydration tolerance. Despite differences in stomatal sensitivity, dehydration tolerance, and osmotic adjustment, all four perennials fall predominantly in the drought-avoidance category, relative to the dehydration tolerance previously reported for a wide range of plant species.


1977 ◽  
Vol 17 (87) ◽  
pp. 598 ◽  
Author(s):  
MJ Fisher ◽  
NA Campbell

In order to understand more fully the effect of water stress on the growth of Townsville stylo (Stylosanthes humilis) (TS), five drought treatments, imposed by the use of rain shelters, were compared with an unstressed control in a field experiment. Droughts were imposed during the early vegetative (EV) and late vegetative (LV) stages, and during flowering (F) until leaf relative water content at 2.30 p.m fell to 60 per cent. Further unrelieved drought was re-applied to these three treatments when seeding was well advanced. The other two treatments were subjected to unrelieved drought, one starting at late flowering (LF) and the other seeding (S). The drought treatments had no effect on the final yield of dry matter compared with the control. Stress during the vegetative stage reduced growth, but the relief of stress was followed by a period of rapid growth which largely compensated for the loss. However, because the EV stress killed 40 per cent of the sward (the plants were unable to use water from depths below 75-1 00 cm), the compensatory phase in this treatment was less marked, but more sustained. Because of the decline in growth rate with approaching maturity, stresses during and after flowering had little effect on yield. Stress during vegetative growth hastened flowering by two weeks; however, pod yields were only reduced in the LF treatment. In general these observations demonstrate important aspects of the plants' good adaptation to the dry monsoonal tropics, and explain its stable long-term yields when maintained in near-pure swards.


2019 ◽  
Vol 61 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Dawid Perlikowski ◽  
Adam Augustyniak ◽  
Aleksandra Skirycz ◽  
Izabela Pawłowicz ◽  
Katarzyna Masajada ◽  
...  

Abstract Festuca arundinacea is a model to work on the mechanisms of drought resistance in grasses. The crucial components of that resistance still remain not fully recognized. It was suggested that deep root system could be a crucial trait for drought avoidance strategy but the other components of root performance under water deficit have not paid much attention of scientists. In this study, two genotypes of F. arundinacea with a different ability to withstand soil water deficit were selected to perform comprehensive research, including analysis of root architecture, phytohormones, proteome, primary metabolome and lipidome under progressive stress conditions, followed by a rewatering period. The experiments were performed in tubes, thus enabling undisturbed development of root systems. We demonstrated that long roots are not sufficient to perfectly avoid drought damage in F. arundinacea and to withstand adverse environmental conditions without a disturbed cellular metabolism (with respect to leaf relative water potential and cellular membrane integrity). Furthermore, we proved that metabolic performance of roots is as crucial as its architecture under water deficit, to cope with drought stress via avoidance, tolerance and regeneration strategies. We believe that the presented studies could be a good reference for the other, more applied experiments, in closely related species.


2008 ◽  
Vol 65 (6) ◽  
pp. 628-633 ◽  
Author(s):  
Eduardo Rossini Guimarães ◽  
Miguel Angelo Mutton ◽  
Márcia Justino Rossini Mutton ◽  
Maria Inês Tiraboschi Ferro ◽  
Gisele Cristina Ravaneli ◽  
...  

Mahanarva fimbriolata (Stål) (Hemiptera: Cercopidae) has become a key pest in the sugarcane (Saccharum officinarum) fields of center-south Brazil. Although some control technologies have shown to be efficient, the damage promoted by this spittlebug species and its interaction with sugarcane are poorly characterized. At high infestation levels the symptoms are similar to those of severe water restriction. This work was conducted to determine whether the stress promoted by spittlebug infestation can be measured in terms of free proline accumulation. The water restriction tolerance of two sugarcane genotypes was also compared. Two experiments were set up in a greenhouse and arranged in a completely randomized design in a 2 x 2 x 4 factorial, with two cultivars (SP80-1816 and RB72454), two stress levels (control and ten nymphs per plant or 50% water restriction), and four sampling dates. The water deficit caused by spittlebug nymphs sucking xylem sap does not result in proline accumulation, illustrating that there are different mechanisms to sense when the water deficit is caused by insect feeding or water potential variation in root cells. The cultivar RB72454 accumulates more free-proline, and the dry mass accumulation and stalk growth are less affected in this cultivar under water restriction. The levels of compatible solutes probably cannot be used to measure spittlebug infestation stress in sugarcane and RB72454 is more tolerant to water shortage than SP80-1816.


2012 ◽  
Vol 63 (10) ◽  
pp. 1034 ◽  
Author(s):  
Kevin Foster ◽  
Megan H. Ryan ◽  
Daniel Real ◽  
Padmaja Ramankutty ◽  
Hans Lambers

The perennial legume Bituminaria bituminosa (L.) C.H. Stirt. var. albomarginata (tedera) has been identified as a promising fodder plant for the southern Australian wheatbelt, but little is known about its drought resistance as a seedling. This study was conducted to (i) examine physiological and morphological responses to water stress of seedlings of tedera, in comparison with lucerne (Medicago sativa L.), biserrula (Biserrula pelecinus L.) and Afghan melon (Citrullus lanatus Thunb.), and (ii) investigate drought adaptation mechanisms of tedera seedlings. Seedlings were grown in a reconstructed field soil profile in pots in a glasshouse. By 25 days after sowing (DAS), plants of all species in the drought-stressed (DS) treatment had experienced water stress, with an average leaf relative water content (RWC) of 66% in DS compared with 79% in well-watered (WW) plants. Tedera, biserrula and Afghan melon maintained a higher RWC than lucerne. At 25 DAS, reductions in shoot dry matter in the DS treatment differed between species: 52% for Afghan melon, 36% for biserrula, 27% for lucerne, and no significant reduction for tedera. Paraheliotropic leaf angles of biserrula, lucerne and tedera were all higher in the DS treatment than in the WW treatment at 25, 32 and 52 DAS. This study revealed significant differences in rooting depth and stomatal conductance between the three legume species when under water stress, with tedera being the most drought-resistant. Traits that may allow tedera to survive a dry period following opening rains include vigorous seedling growth, early taproot elongation, effective stomatal control and paraheliotropic leaf movements.


Sign in / Sign up

Export Citation Format

Share Document