Relationships between Cell Wall Digestibility and Lignin Content as Influenced by Lignin Type and Analysis Method

Crop Science ◽  
2019 ◽  
Vol 59 (3) ◽  
pp. 1122-1132 ◽  
Author(s):  
John H. Grabber
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Avinash C. Srivastava ◽  
Fang Chen ◽  
Tui Ray ◽  
Sivakumar Pattathil ◽  
Maria J. Peña ◽  
...  

2016 ◽  
pp. 219-224
Author(s):  
F. R. D. van Parijs ◽  
T. Ruttink ◽  
G. Haesaert ◽  
I. Roldán-Ruiz ◽  
H. Muylle

1969 ◽  
Vol 49 (4) ◽  
pp. 499-504 ◽  
Author(s):  
D. N. Mowat ◽  
M. L. Kwain ◽  
J. E. Winch

The in vitro cell wall digestibility and chemical composition were determined with a total of 56 forage samples. Two samples each of Dactylis glomerata L., Bromus inermis Leyss., Medicago sativa L., and Lotus corniculatus L. were collected at three maturities. Two samples of Symphtum officinale L. were collected at two maturities. All samples were later separated into leaf and stem portions. Wide variation existed in chemical composition and digestibility. The range in cell wall constituents was 23.9 to 79.8%, in acid detergent fiber 16.9 to 52.3%, and in lignin 3.7 to 19.1%. The in vitro cell wall digestibility varied from 16.6 to 77.5%. Correlation coefficients between lignin content and cell wall digestibility were higher when lignin was expressed as a percentage of dry matter rather than as a percentage of cell walls. In grasses, the relationship between lignin in cell walls and cell wall digestibility was linear. However, cell wall digestibility of legumes and Russian comfrey was not as low as expected from the content of lignin.


1990 ◽  
Vol 114 (2) ◽  
pp. 207-212 ◽  
Author(s):  
J. W. Cone ◽  
F. M. Engels

SUMMARYTissues of maize grown under different temperature regimes showed remarkable differences in anatomical and chemical properties and in vitro digestibility. A high temperature regime (12 h at 30 °C and 12 h at 24 °C) resulted in decreased cell wall thickness, cell diameter and cell wall yield, doubled lignin content and decreased in vitro digestibility, compared with plants grown under a low temperature regime (12 h at 18 °C and 12 h at 12 °C). A reduction in intensity of staining for lignin was observed in plants grown at 30/24 °C. Cell wall digestibility was thought to be limited by an indigestible cell wall layer between the secondary walls of adjacent cells. The use of lignin staining was of limited value for predicting cell wall digestibility. High temperatures probably affect physiological processes leading to lignin formation and deposition.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amandine Leroy ◽  
Xavier Falourd ◽  
Loïc Foucat ◽  
Valérie Méchin ◽  
Fabienne Guillon ◽  
...  

Abstract Background Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. Results HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β–O–4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in $${T}_{1\rho }^{H}$$ T 1 ρ H , $${T}_{HH}$$ T HH and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5–15 nm pore size range. Conclusion The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.


Author(s):  
S. Pramod ◽  
M. Anju ◽  
H. Rajesh ◽  
A. Thulaseedharan ◽  
Karumanchi S. Rao

AbstractPlant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2625
Author(s):  
Nurashikin Kemat ◽  
Richard G. F. Visser ◽  
Frans A. Krens

One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH.


Sign in / Sign up

Export Citation Format

Share Document