In Situ Determination of Physical Properties of the Surface Layer of Field Soils

1969 ◽  
Vol 33 (3) ◽  
pp. 349-353 ◽  
Author(s):  
J. de Vries
Author(s):  
Sudad Hameed AL-OBAIDI ◽  
Victoria SMIRNOV ◽  
Hiba Hussein ALWAN

Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions is of great importance both for the calculation of reserves and for the interpretation of well logging data. In addition, it is also important for the preparation of hydrocarbon field development projects. The study of the processes of changes in the petrophysical properties of the reservoir under controlled conditions allows not only to determine their reliability but also to evaluate the dynamics of these changes depending on the temperature and pressure conditions of the reservoir and the water saturation of the rocks. In this work, an evaluation of the dependence of the physical properties of hydrocarbon reservoirs on their water saturation (Sw) was carried out. Residual water saturation (Swr) was created in the rocks and the properties of these rocks were compared at the states of partial (25 %) and complete water saturation (100 %). The changes in petrophysical parameters of partially water saturated rocks during the increase in effective pressure were studied and estimates of these changes were obtained. The results showed that when the effective pressure is increased, the Swr increases by an average of 6 % compared to atmospheric conditions. This is accompanied by an increase in the velocity of longitudinal (by 51.9 % on average) and lateral waves (by 37.1 % on average). As residual water saturation increases, effective permeability decreases for both standard and reservoir conditions, with, gas permeability decreasing for both dry samples (by 23 % on average) and samples with residual water saturation (effective permeability decreases by 27 % on average). HIGHLIGHTS Changes in physical properties of hydrocarbon reservoirs by determining physical properties (permeability, porosity, elastic, electrical, deformation strength) under the standard conditions and in physical modelling of reservoir conditions and processes Assessment of the effectiveness of water saturation on the physical properties of the reservoir Comparisons between the petrophysical properties of reservoir core samples in which the pore space is fully saturated with the reservoir fluid model and samples with residual water saturation Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions Estimation of the changes in petrophysical parameters of partial water-saturated rocks during the increase in effective formation pressure GRAPHICAL ABSTRACT


Author(s):  
Thomas Reinsch ◽  
Guido Blöcher ◽  
Harald Milsch ◽  
Kort Bremer ◽  
Elfed Lewis ◽  
...  

1976 ◽  
Vol 56 (4) ◽  
pp. 453-461 ◽  
Author(s):  
N. K. NAGPAL ◽  
J. DE VRIES

In the Abbotsford soil, which consists of 60 cm of silt loam over gravelly sand, the measurement of the partial unsaturated hydraulic conductivity characteristic Κ (ΨM) by the instantaneous profile (IP) method for the surface layer required hydrologic isolation of the experimental plot to prevent lateral flow within the surface layer. Lateral flow did not interfere with the measurement of the partial water retention characteristic θ (ΨM). Results, indicated wetting front instability at the interface between the two layers and the corresponding formation of "wetting fingers," which precluded calculation of Κ (ΨM) for the coarse layer. Tensiometer measurements indicated that wetting fingers had formed in the coarse layer around the tensiometer access tubes. The results point to difficulties inherent in the measurement of water potential in coarse layers with tensiometers and therefore in the application of the IP method. In the Delta soil, which consists of 30 cm of silt loam over fine to medium sand, difficulties were caused by irregular wetting of the Ap horizon which was observed to be related to its hydrophobic nature. Satisfactory θ (ΨM) curves were obtained for the sandy layer. No Κ (ΨM) functions were calculated for the sandy layer because of insufficient data.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wonshik Kyung ◽  
Choong H. Kim ◽  
Yeong Kwan Kim ◽  
Beomyoung Kim ◽  
Chul Kim ◽  
...  

AbstractRotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by controlling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr2RuO4. Rotated octahedra in the surface layer of Sr2RuO4 are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr2RuO4 originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step toward in situ control of the physical properties of perovskite oxides.


1961 ◽  
Vol 38 (4) ◽  
pp. 545-562 ◽  
Author(s):  
L. Kecskés ◽  
F. Mutschler ◽  
I. Glós ◽  
E. Thán ◽  
I. Farkas ◽  
...  

ABSTRACT 1. An indirect paperchromatographic method is described for separating urinary oestrogens; this consists of the following steps: acidic hydrolysis, extraction with ether, dissociation of phenol-fractions with partition between the solvents. Previous purification of phenol fraction with the aid of paperchromatography. The elution of oestrogen containing fractions is followed by acetylation. Oestrogen acetate is isolated by re-chromatography. The chromatogram was developed after hydrolysis of the oestrogens 'in situ' on the paper. The quantity of oestrogens was determined indirectly, by means of an iron-reaction, after the elution of the iron content of the oestrogen spot, which was developed by the Jellinek-reaction. 2. The method described above is satisfactory for determining urinary oestrogen, 17β-oestradiol and oestriol, but could include 16-epioestriol and other oestrogenic metabolites. 3. The sensitivity of the method is 1.3–1.6 μg/24 hours. 4. The quantitative and qualitative determination of urinary oestrogens with the above mentioned method was performed in 50 pregnant and 9 non pregnant women, and also in 2 patients with granulosa cell tumour.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Sign in / Sign up

Export Citation Format

Share Document