Measuring Chloride in Effluent Flowing from a Soil Column

1972 ◽  
Vol 36 (2) ◽  
pp. 378-380 ◽  
Author(s):  
R. S. Mansell ◽  
Atef Elzeftawy
Keyword(s):  
2010 ◽  
Vol 18 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Chao ZHANG ◽  
Yu-Ping CHE ◽  
Zhong-Pei LI

2017 ◽  
Vol 34 (4) ◽  
pp. 393
Author(s):  
Zhixiang Chen ◽  
Shunqun Li ◽  
Jinhong Xia ◽  
Kai Wang ◽  
Chao Gui

Author(s):  
Alicia Balbín-Suárez ◽  
Samuel Jacquiod ◽  
Annmarie-Deetja Rohr ◽  
Benye Liu ◽  
Henryk Flachowsky ◽  
...  

Abstract A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD) causing agents to spread in soil. ‘M26’ apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of OTUs affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production, and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Christopher Oze ◽  
Joshua Beisel ◽  
Edward Dabsys ◽  
Jacqueline Dall ◽  
Gretchen North ◽  
...  

Perchlorate (ClO4−) is globally enriched in Martian regolith at levels commonly toxic to plants. Consequently, perchlorate in Martian regolith presents an obstacle to developing agriculture on Mars. Here, we assess the effect of perchlorate at different concentrations on plant growth and germination, as well as metal release in a simulated Gusev Crater regolith and generic potting soil. The presence of perchlorate was uniformly detrimental to plant growth regardless of growing medium. Plants in potting soil were able to germinate in 1 wt.% perchlorate; however, these plants showed restricted growth and decreased leaf area and biomass. Some plants were able to germinate in regolith simulant without perchlorate; however, they showed reduced growth. In Martian regolith simulant, the presence of perchlorate prevented germination across all plant treatments. Soil column flow-through experiments of perchlorate-containing Martian regolith simulant and potting soil were unable to completely remove perchlorate despite its high solubility. Additionally, perchlorate present in the simulant increased metal/phosphorous release, which may also affect plant growth and biochemistry. Our results support that perchlorate may modify metal availability to such an extent that, even with the successful removal of perchlorate, Martian regolith may continue to be toxic to plant life. Overall, our study demonstrates that the presence of perchlorate in Martian regolith provides a significant challenge in its use as an agricultural substrate and that further steps, such as restricted metal availability and nutrient enrichment, are necessary to make it a viable growing substrate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Liu ◽  
Yueqin Cheng ◽  
Yang Liu ◽  
Danyan Chen ◽  
Yin Chen ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2011 ◽  
Vol 415-417 ◽  
pp. 1703-1707
Author(s):  
Jun Min Chen ◽  
Xiao Lin Yao

Abstract. In order to investigate the optimal thickness of infiltration media in the Constructed Rapid Infiltration System, the artificial soil column is used to simulate the Constructed Rapid Infiltration System, and the CODCr, NH3-N and TN concentrations of the effluent from all the sampling sites are monitored. The experimental results and analysis show that the thickness of infiltration media exerts a significant influence on the CODCr, NH3-N and TN concentration and removal efficiency of the effluent; the CODCr, NH3-N and TN are mainly removed in the 0-1800mm zone of the artificial soil column; the total CODCr removal efficiency increases, as the thickness of infiltration media increases, but the CODCr removal efficiency in the 1800-2200mm zone is very low; the NH3-N and TN removal efficiency reaches the maximum where the thickness of infiltration media is 1800mm; the NH3-N and TN concentration of the effluent from 1800-2200mm zone dose not decrease, but increase 5-8%, due to the assimilation denitrification and amemoniation reaction on the end of the anaerobic zone; in consideration of the effluent quality, efficient biodegradation zone, construction investment, etc. the optimal thickness of infiltration media in CRI system should be 1800mm.


2021 ◽  
pp. 127099
Author(s):  
Saba Miri ◽  
Seyyed Mohammadreza Davoodi ◽  
Thomas Robert ◽  
Satinder Kaur Brar ◽  
Richard Martel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document