soil column experiment
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 34 ◽  
pp. 92-99
Author(s):  
Abdullahi Salisu ◽  
Aimrun Wayayok ◽  
Ahmad F. Abdallah ◽  
Rowshon Md. Kamal

Unlike other micro-irrigation facilities like a drip, trickle, and sprinklers that emits water at regularly spaced intervals with predefined discharges, porous rubber pipes (soaker hose) has openings of variable sizes that become unevenly spaced with uneven distribution. The latter makes discharge to be variant along its lateral. Shorter sections are used under laboratory column experiments of soil wetting pattern studies and for this reason, laboratory experiments were conducted to evaluate the extent of emission rates variability on short sections of commercial Irrigation Soaker Hose, 16 mm diameter. Three sections of 10 cm length pipes were randomly selected from 15 no's cuts from different parts of the twenty meters length pipe bundle and used to investigate the extent of variability on emission rates characteristics under six different operating pressures. The result was achieved by collecting and measuring water emitted through the pipe sections at pre-determined pressures. The various discharges, coefficient of variation, and pressure-discharge curves of the section of the pipe then determined from the data. The result shows somewhat similar trends on the increase for water collected with an increase in pressures; however, when statistically compared, the discharges among the pipe sections vary. The values of Coefficient of Variation (CV) are less than 10 % as the values CV range from 0.92 % to 5.82 %, which is within a good category, according to ASAE Standard EP405.1 of 0-10%. The findings indicate that, despite variations among the investigated sections, it can use any part as a representative unit in the soil column experiments with reasonable accuracy.


Author(s):  
Peiwen Xiao ◽  
Baohua Xiao ◽  
Muhammad Adnan

The capacity of carbon sequestration of limestone soils in karst areas is unclear and needs to be studied, and there are few reports on the effect of calcium ions content on the migration and transformation of soil dissolved organic matter (DOM). In this paper, the leaching process of DOM from four-layered soil samples of two limestone soil profiles was systematically studied by soil column experiment with different Ca2+ concentration runoff. The results show that the elution of DOM can be divided into two stages, a rapid release and dilution stage and a nearly stable DOM release stage. After the elution, the average DOC loss rates are 61.9%, 75.5%, 70.9% and 49.1% for four samples, H1, H2, S1, and S2, respectively. When the Ca2+ concentration of eluent increases, the following phenomena occur: 1) The DOC loss rate decreased, which was reduced by 0.6-7.5% in this study. 2) The elution rate decreased and the desorption activation energy increased. 3) The molecular weight and the aromaticity of effluent DOM increased and decreased respectively. 4) The humic-like components were eluted less. The results demonstrate the higher Ca2+ concentration reduces the elution of soil DOM, improves the aromaticity of retained soil organic matter (SOM), and may inhibit SOM utilization and degradation by microorganisms. This study helps to understand better the transport and fate of SOM in karst regions, and provides theoretical support for soil planning management and carbon sink increase in karst areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Liu ◽  
Yueqin Cheng ◽  
Yang Liu ◽  
Danyan Chen ◽  
Yin Chen ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Author(s):  
Rowena Gerjets ◽  
Falk Richter ◽  
Martin Jansen ◽  
Andrea Carminati

Abstract Aims Hydraulic redistribution (HR) enhances water resources for neighboring crops in silvopastoral agroforestry (AF). Here, we tested whether and to what extent water stressed shallow-rooted neighboring plants benefit from water redistributed by deep-rooted poplar plants. Methods We conducted trace experiments with deuterated water (2H2O) in greenhouse soil column experiments. We measured hydraulic lift (HL) by poplars grown at two levels of soil drying and estimated the amount of hydraulically lifted water. In a parallel experiment we grew poplars and barley (Hordeum vulgare) in two columns connected via a small cross-rooting segment. Results Soil moisture measurements and stable isotope signatures of soil and xylem water proved the occurrence of HL in poplar. Additionally, stable isotopes proved the transport of water from deep roots of poplars to shallow roots of barley. Conclusions In conclusion, the experiments showed that poplars are capable to redistribute water during drought spells and that this water can facilitate plant growth of shallow-rooted crops. This result implies evidence for an enhanced soil water supply of plants in agroforest systems under drought conditions.


2021 ◽  
Vol 1108 (1) ◽  
pp. 012007
Author(s):  
M Mukhlisin ◽  
B Yunanto ◽  
A Suharjono ◽  
M Martono ◽  
R Apriantoro ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoyu Liu ◽  
Yueqin Cheng ◽  
Yang Liu ◽  
Danyan Chen ◽  
Yin Chen ◽  
...  

Abstract Pyrochar (PC) is always with high pH value, and improper application might increase rice paddy ammonia volatilization (PAV), which is the main nitrogen loss through air during rice production. Differently, hydrochar (HC) takes the advantages of high productive rate and always with lower pH value compared with PC. However, effect pattern and mechanism of HC on PAV are still unclear. In the present study, soil column experiments were conducted to investigate the effect of PC and HC application on PAV. In total, treatments with four types of biochar (WPC, SPC, WHC and SHC, i.e., PC and HC prepared with wheat straw and sawdust, respectively) and two application rates (0.5% and 1.5%, w/w) were set up and non-biochar application was used as control. Results showed that, application of HC with low pH value could not reduce PAV compared with PC. Total PAV increased significantly as the increase of HC application rate (especially for WHC). The increment of PAV under high rate HC application might be due to the strong buffer capacity of soil, the aging of biochar, the high nitrogen from HC. The results indicated that HC should be pretreatment before utilization in agricultural environment considering PAV reduction.


2020 ◽  
Author(s):  
Nils Dietrich ◽  
Daniel Wilkinson ◽  
Florian Hirsch ◽  
Magdalena Sut-Lohmann ◽  
Antonia Geschke ◽  
...  

<p>Microplastics are not only found in marine and lacustrine environments but also in soils. Microplastics enter natural soil environments from legal or illegal waste deposition. In arable soils, microplastics often stem from the decomposition of plastic sheeting. The accumulation of (micro-)plastic from garbage bags in which biological waste is often disposed, is also a significant problem for the recycling and composting of organic waste. Commercially available compostable bags are advertised as degradable. Thus, these compostable bags ought to accumulate less in soils than non-compostable bags. We present a pilot study to determine the preference of earthworms (Lumbricus terrestris and Eisenia hortensis) for taking up and translocating different types of microplastic in soils. Our initial findings from the soil column experiment suggest that the earthworms show a strong tendency for the uptake of microplastic.  We also observed direct and indirect transport of microplastic by earthworms from the surface to deeper parts of the soil columns.</p>


2020 ◽  
Author(s):  
Chen Chen ◽  
Hui Han ◽  
Ya Meng ◽  
Hangyu Wu ◽  
Rui Jia ◽  
...  

Abstract Nitrate leaching is severe in greenhouse agriculture where excessive nitrogen is often applied to maintain high crop productivities. Carbon amendment in the subsoil, where denitrification is limited by the availability of carbon, might mitigate nitrate leaching. In this study, we investigated the effects of carbon amendment in the subsoil on nitrate leaching and the emission of greenhouse gases (CH 4 and N 2 O) emissions using a soil column experiment. Diversity and abundance of total and nirS-, nirK- , and nosZ -type denitrifying bacteria were investigated by high throughput sequencing of PCR amplicons and quantitative real-time PCR. The amounts of nitrate leaching were >39% less in the treatments with carbon amendment than in the non-amended control without fertilization or in treatments fertilized by two doses (1600 or 3200 kg N ha - 1 ) of ammonia or nitrate. No effects of carbon amendment on the emissions of CH 4 or N 2 O were observed. The total N content in the subsoil zone with carbon amendment increased from 20.74% to 70.54%. Strikingly, the abundance of nirS , nosZ and 16S rRNA was higher in the treatment than the corresponding controls while no significant effects were detected for nirK . Carbon amendment rather than fertilization was the primary factor that influenced the community composition of the three denitrifying bacterial communities and explained 14%, 10%, and 4% of the variation in the community of nosZ, nirS , and nirK, respectively. Decreased alpha-diversity and increased variability in beta-diversity were observed for the carbon amended treatment for total and denitrifying bacteria. On average, genera such as Anaerovorax, Pseudobacteroides, Magnetospirillum, Prolixibacter, Sporobacter, Ignavibacterium, Syntrophobacter, Oxobacter, Hydrogenispora, Desulfosporomusa, Mangrovibacterium, and Sporomusa were enriched more than seven times in soil amended with carbon. In summary, carbon amendment in the subsoil mitigated nitrate leaching and increased the nitrogen pool by possible activation of denitrifying and anaerobic bacterial populations.


Sign in / Sign up

Export Citation Format

Share Document