limited input data
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
pp. 84-103
Author(s):  
Ida Bagus Mandhara Brasika

This study was conducted to model fire occurrence within El Nino variability and peatland distribution. These climate and geographical factors have a significant impact on forest fires in tropical areas such as Indonesia. The re-analysis dataset from ECMWF was observed with respect to climate characteristics in Indonesian El Nino events. The INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) was utilized to simulate fires over Borneo Island due to its capability to simulate large-scale fires with simplified parameters. There were some adjustments in this INFERNO model, especially for peat fire as peatland has a significant impact on fires. The first was the contribution of climate to the peat fire which is represented by long-term precipitation. The second was the combustion completeness of peat fire occurrence that is mainly affected by human-induced peat drainage. The result of the model shows that El Nino variability mainly affected peat fires but was unable to well simulate the above-ground fire. It increased the burnt area during strong El Nino but overestimated the fires during low/no El Nino season due to lack of peat fire ignition in the calculation. Moreover, as the model did not provide peat drainage simulation, it underestimated the carbon emission. This model has shown promising results by addressing key features in limited input data, but improving some simulations is necessary for regulating weak/no El Nino conditions and carbon combustion of peat fire.


Author(s):  
Evan M Long ◽  
Peter J Bradbury ◽  
M Cinta Romay ◽  
Edward S Buckler ◽  
Kelly R Robbins

Abstract Genomic applications such as genomic selection and genome-wide association have become increasingly common since the advent of genome sequencing. The cost of sequencing has decreased in the past two decades, however genotyping costs are still prohibitive to gathering large datasets for these genomic applications, especially in non-model species where resources are less abundant. Genotype imputation makes it possible to infer whole genome information from limited input data, making large sampling for genomic applications more feasible. Imputation becomes increasingly difficult in heterozygous species where haplotypes must be phased. The Practical Haplotype Graph is a recently developed tool that can accurately impute genotypes, using a reference panel of haplotypes. We showcase the ability of the Practical Haplotype Graph to impute genomic information in the highly heterozygous crop cassava (Manihot esculenta). Accurately phased haplotypes were sampled from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved more accurate than relying on computational phasing methods. The Practical Haplotype Graph achieved high imputation accuracy, using sparse skim-sequencing input, which translated to substantial genomic prediction accuracy in cross validation testing. The Practical Haplotype Graph showed improved imputation accuracy, compared to a standard imputation tool Beagle, especially in predicting rare alleles.


2021 ◽  
Author(s):  
Evan M Long ◽  
Peter J. Bradbury ◽  
Cinta Romay ◽  
Edward Buckler ◽  
Kelly R Robbins

Genomic applications such as genomic selection and genome-wide association have become increasingly common since the advent of genome sequencing. The cost of sequencing has decreased in the past two decades, however genotyping costs are still prohibitive to gathering large datasets for these genomic applications, especially in non-model species where resources are less abundant. Genotype imputation makes it possible to infer whole genome information from limited input data, making large sampling for genomic applications more feasible. Imputation becomes increasingly difficult in heterozygous species where haplotypes must be phased. The Practical Haplotype Graph is a recently developed tool that can accurately impute genotypes, using a reference panel of haplotypes. We showcase the ability of the Practical Haplotype Graph to impute genomic information in the highly heterozygous crop cassava (Manihot esculenta). Accurately phased haplotypes were sampled from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved more accurate than relying on computational phasing methods. The Practical Haplotype Graph achieved high imputation accuracy, using sparse skim-sequencing input, which translated to substantial genomic prediction accuracy in cross validation testing. The Practical Haplotype Graph showed improved imputation accuracy, compared to a standard imputation tool Beagle, especially in predicting rare alleles.


2021 ◽  
Vol 13 (9) ◽  
pp. 1629
Author(s):  
Geun-Ho Kwak ◽  
Chan-won Park ◽  
Kyung-do Lee ◽  
Sang-il Na ◽  
Ho-yong Ahn ◽  
...  

When sufficient time-series images and training data are unavailable for crop classification, features extracted from convolutional neural network (CNN)-based representative learning may not provide useful information to discriminate crops with similar spectral characteristics, leading to poor classification accuracy. In particular, limited input data are the main obstacles to obtain reliable classification results for early crop mapping. This study investigates the potential of a hybrid classification approach, i.e., CNN-random forest (CNN-RF), in the context of early crop mapping, that combines the automatic feature extraction capability of CNN with the superior discrimination capability of an RF classifier. Two experiments on incremental crop classification with unmanned aerial vehicle images were conducted to compare the performance of CNN-RF with that of CNN and RF with respect to the length of the time-series and training data sizes. When sufficient time-series images and training data were used for the classification, the accuracy of CNN-RF was slightly higher or comparable with that of CNN. In contrast, when fewer images and the smallest training data were used at the early crop growth stage, CNN-RF was substantially beneficial and the overall accuracy increased by maximum 6.7%p and 4.6%p in the two study areas, respectively, compared to CNN. This is attributed to its ability to discriminate crops from features with insufficient information using a more sophisticated classifier. The experimental results demonstrate that CNN-RF is an effective classifier for early crop mapping when only limited input images and training samples are available.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 441
Author(s):  
Philipp Grabenweger ◽  
Branislava Lalic ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Erwin Murer ◽  
...  

A one-dimensional simulation model that simulates daily mean soil temperature on a daily time-step basis, named AGRISOTES (AGRIcultural SOil TEmperature Simulation), is described. It considers ground coverage by biomass or a snow layer and accounts for the freeze/thaw effect of soil water. The model is designed for use on agricultural land with limited (and mostly easily available) input data, for estimating soil temperature spatial patterns, for single sites (as a stand-alone version), or in context with agrometeorological and agronomic models. The calibration and validation of the model are carried out on measured soil temperatures in experimental fields and other measurement sites with various climates, agricultural land uses and soil conditions in Europe. The model validation shows good results, but they are determined strongly by the quality and representativeness of the measured or estimated input parameters to which the model is most sensitive, particularly soil cover dynamics (biomass and snow cover), soil pore volume, soil texture and water content over the soil column.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 324
Author(s):  
Ou Yang ◽  
Marianthi Ierapetritou

Due to high demand, monoclonal antibodies (mAbs) production needs to be efficient, as well as maintaining a high product quality. Quality by design (QbD) via predictive process modeling greatly facilitates process understanding and can be used to adjust process parameters to further improve the unit operations. In this work, mechanistic and dynamic kriging models are developed to capture the protein productivity and glycan fractions under different temperatures and pH levels. The design of experiments is used to generate input and output data for model training. The dynamic kriging model shows good performance in capturing the dynamic profiles of cell cultures and glycosylation using only limited input data. The developed model is further used for feasibility analysis, and successfully identifies the operating design space, maintaining high productivity and guaranteed product quality.


2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Yiting Wang ◽  
Donghui Xie ◽  
Yinggang Zhan ◽  
Huan Li ◽  
Guangjian Yan ◽  
...  

Despite its wide applications, the spatiotemporal fusion of coarse- and fine-resolution satellite images is limited primarily to the availability of clear-sky fine-resolution images, which are commonly scarce due to unfavorable weather, and such a limitation might cause errors in spatiotemporal fusion. Thus, the effective use of limited fine-resolution images, while critical, remains challenging. To address this issue, in this paper we propose a new phenological similarity strategy (PSS) to select the optimal combination of image pairs for a prediction date. The PSS considers the temporal proximity and phenological similarity between the base and prediction images and computes a weight for identifying the optimal combination of image pairs. Using the PSS, we further evaluate the influence of input data on the fusion accuracy by varying the number and temporal distribution of input images. The results show that the PSS (mean R = 0.827 and 0.760) outperforms the nearest date (mean R = 0.786 and 0.742) and highest correlation (mean R = 0.821 and 0.727) strategies in both the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the linear mixing growth model (LMGM), respectively, for fusing Landsat 8 OLI and MODIS NDVI datasets. Furthermore, base images adequately covering different growth stages yield better predictability than simply increasing the number of base images.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5258 ◽  
Author(s):  
Byung-ki Jeon ◽  
Eui-Jong Kim

Solar irradiance prediction is significant for maximizing energy-saving effects in the predictive control of buildings. Several models for solar irradiance prediction have been developed; however, they require the collection of weather data over a long period in the predicted target region or evaluation of various weather data in real time. In this study, a long short-term memory algorithm–based model is proposed using limited input data and data from other regions. The proposed model can predict solar irradiance using next-day weather forecasts by the Korea Meteorological Administration and daily solar irradiance, and it is possible to build a model with one-time learning using national and international data. The model developed in this study showed excellent predictive performance with a coefficient of variation of the root mean square error of 12% per year even if the learning and forecast regions were different, assuming that the weather forecast was correct.


Sign in / Sign up

Export Citation Format

Share Document