The Chemistry of Fungal Humic Acid-like Polymers and of Soil Humic Acids

1973 ◽  
Vol 37 (2) ◽  
pp. 229-236 ◽  
Author(s):  
M. Schnitzer ◽  
M. I. Ortiz de Serra ◽  
K. Ivarson
1992 ◽  
Vol 38 (3) ◽  
pp. 203-208 ◽  
Author(s):  
C. Yanze Kontchou ◽  
Roland Blondeau

Biodegradation of soil humic acids by Streptomyces viridosporus ATCC 39115 growing in a mineral salts – glucose medium was demonstrated. This biodegradation accompanies bacterial growth and is, therefore, presumed to be a primary metabolic activity, but humic acids were not used as the sole source of carbon. This bacterial activity was enhanced when cells were shaken and within a pH range of 6.5–8.5. In further experiments, the relative abilities of S. viridosporus to mineralize [14C]melanoidin, used as synthetic humic acid, were also established. In contrast to the white rot fungus Phanerochaete chrysosporium, another microorganism exhibiting humic acid degrading activity at acidic pH, poor extracellular activities were found in culture medium of S. viridosporus, and veratryl alcohol does not result in increased humic acid degradation. In spite of some peroxidase activity measured in culture filtrates and analyzed by polyacrylamide gel electrophoresis, the humic acid degrading system of S. viridosporus, in these experimental conditions, seems to be cell associated. Key words: humic acid biodegradation, melanoidin mineralization, Streptomyces viridosporus, cell-bound humic acids.


2007 ◽  
Vol 18 (5) ◽  
pp. 287-293 ◽  
Author(s):  
M WEI ◽  
J LIAO ◽  
N LIU ◽  
D ZHANG ◽  
H KANG ◽  
...  

Soil Research ◽  
1969 ◽  
Vol 7 (3) ◽  
pp. 253 ◽  
Author(s):  
JN Ladd ◽  
JHA Butler

The effects of neutralized solutions of soil humic acids on the activities of a range of proteolytic enzymes and of tyrosinase have been measured. Humic acids inhibit carboxypeptidase A, chymotrypsin A, pronase, and trypsin activities, stimulate papain, ficin, subtilopeptidase A, and thermolysin activities, and had no effect on phaseolain and tyrosinase activities. Stimulation of papain and ficin activities is not due to formation of metal ion-humic acid complexes. Inhibition of trypsin activity and stimulation of papain activity increased with increasing molecular weight of the humic acid. However, humic acid fractions of varying molecular weights had similar effects on the magnitude of inhibition of pronase and carboxypeptidase A activities. Polycondensates derived from p-benzoquinone and catechol influenced enzyme activity in the same way as humic acids, although the order of their relative effectiveness changed with different enzymes. Polyacrylate preparations were the most effective inhibitors of trypsin activity but had no effect on papain and ficin activities.


2012 ◽  
Vol 51 (3) ◽  
pp. 228-237
Author(s):  
D. Dudare ◽  
M. Klavins

The aim of this study is to determine the Cu(II) complexing capacity and stability constants of Cu(II) complexes of humic acids isolated from two well-characterized raised bog peat profiles in respect to the basic properties and humification characteristics of the studied peats and their humic acids. The complex stability constants significantly change within the studied bog profiles and are well correlated with the age and decomposition degree of the peat layer from which the humic acids have been isolated. Among factors that influence this complexation process, molecular mass and ability to form micellar structures (supramolecules) of humic substances are of key importance.


2019 ◽  
Vol 1 (1) ◽  
pp. 29-32
Author(s):  
Ruzimurod B. Boimurodov ◽  
Zebinisso Q. Bobokhonova

In this article is showing, that the irrigation mountain brown carbonate soils prone methods of irrigation and grassing comes the rapid growth and development of natural vegetation, which leads to intensive humus accumulation. Humus content in the upper layer is increased by 0.98% and a significantly smaller severely eroded. Increasing the amount of humus promotes accumulation mainly humic acids, that conducts to expansion of relations the content of humic acid: The content of folic acid. When grassing of soil traced sharp increase in the number associated with the related and R2 O3 humic acid.


2018 ◽  
Vol 69 (1) ◽  
pp. 191-195
Author(s):  
Elena Radu ◽  
Elena Emilia Oprescu ◽  
Cristina Emanuela Enascuta ◽  
Catalina Calin ◽  
Rusandica Stoica ◽  
...  

The dehydration of polysaccharides fraction in the presence of acid catalysts, is a chemical process in which results as secondary product humic matter. In our work, the humic acid mixture was for the first time based on our knowledge extracted from defatted microalgae biomass rich in polysaccharides by standard alkali treatment, followed by precipitation at acidic pH. The dried humic acid mixture has been characterized using infrared spectroscopic measurements (FT-IR). Exfoliated graphite nanoplatelets (xGnP) were used as new adsorbents for this type of humic acids mixture, their adsorption being investigated. The effect of several parameters such as: contact time, concentration of humic acid mixture, concentration of xGnP, temperature and pH of the solutions were studied. The process of adsorption took place with good results, in the following conditions: at a concentration of humic acid mixture of 18.6 mg L-1, an xGnP amount of 0.01 mg in 25 mL of solution, at a temperature of 25 �� and at acidic pH values, in aqueous solution.


2021 ◽  
Author(s):  
Chunli Li ◽  
Zhiwei David Yue ◽  
Xiaohong Tian ◽  
John Hazlewood

Abstract Humic acids, one major type of organic foulants in steam assisted gravity drainage (SAGD) produced water, can precipitate on surface and downhole equipment in SAGD facilities, resulting in high cleaning costs, potential equipment damage and decrease of injectivity of disposal wells. In this paper, a cost-effective chemical solution is presented where an alcohol ethoxylate surfactant/chelating agent package can efficiently disperse the organic fouling molecules in SAGD produced water; therefore, the approach is expected to significantly mitigate the humic acid related fouling issues in the SAGD system. In this study, a variety of commercially available surfactant products were evaluated for their aids in well injectivity on humic acid molecules in the freshly obtained SAGD produced water. The lab testing filtration apparatus was specially designed to simulate the sandstone formation geology of SAGD disposal wells. An "efficiency factor" was defined to grade the dispersing performance of the surfactant and/or surfactant/chelating agent package in the lab filtration tests. The efficiency factor provides a reasonable estimation regarding how well the chemical can reduce the plugging risk in a disposal well as compared to the untreated produced water. Among all the surfactant products tested, an alcohol ethoxylate surfactant with the appropriate molecular structure shows distinguished dispersing performance on humic acids in SAGD produced water. However, the surfactant alone was found inconsistent in the dispersing performance when different batches of the produced water were involved. Inclusion of the specific metal chelating agents to the above surfactant formulation improved the dispersing performance consistency. The chelator molecules presumably help destroy the intermolecular bridges among humic acid molecules in the SAGD produced water; thereby, increasing the dispersing effectiveness of the alcohol ethyoxylate surfactants. Tests show that the efficiency factor of the surfactant/chelating agent package is higher than 8, which implies that the formulation could lead to eight times extension of the interval between workovers on SAGD disposal wells, a significant reduction for the operational downtime and costs. This study presented a cost-effective chemical solution to help disperse the humic acid molecules in SAGD produced water, which can help significantly reduce the fouling risk caused by organic foulants, improve injectivity and extend the intervals between workovers of SAGD disposal wells.


Sign in / Sign up

Export Citation Format

Share Document