The stability of Fe5O6 and Fe4O5 at high pressure and temperature

2019 ◽  
Vol 104 (9) ◽  
pp. 1356-1359
Author(s):  
Koutaro Hikosaka ◽  
Ryosuke Sinmyo ◽  
Kei Hirose ◽  
Takayuki Ishii ◽  
Yasuo Ohishi

Abstract The oxygen fugacity in the interior of the Earth is largely controlled by iron-bearing minerals. Recent studies have reported various iron oxides with chemical compositions between FeO and Fe3O4 above ~10 GPa. However, the stabilities of these high-pressure iron oxides remain mostly uninvestigated. In this study, we performed in situ X-ray diffraction (XRD) measurements in a laser-heated diamond-anvil cell (DAC) to determine the phase relations in both Fe5O6 and Fe4O5 bulk compositions to 61 GPa and to 2720 K. The results show that Fe5O6 is a high-temperature phase stable above 1600 K and ~10 GPa, while FeO + Fe4O5 are formed at relatively low temperatures. We observed the decomposition of Fe5O6 into 2FeO + Fe3O4 above 38 GPa and the decomposition of Fe4O5 into FeO + h-Fe3O4 at a similar pressure range. The coexistence of FeO and Fe3O4 indicates that none of the recently discovered compounds between FeO and Fe3O4 (i.e., Fe5O6, Fe9O11, Fe4O5, and Fe7O9) are formed beyond ~40 GPa at 1800 K, corresponding to conditions in the shallow lower mantle. Additionally, as some superdeep diamonds have genetic links with these high-pressure iron oxides, our results give constraints on pressure and temperature conditions of their formation.

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1073
Author(s):  
Congyan Zhang ◽  
Uttam Bhandari ◽  
Jialin Lei ◽  
Congyuan Zeng ◽  
Shengmin Guo ◽  
...  

In this work, the performance of the carbon doped compositionally complex alloy (CCA) MoNbTaW was studied under ambient and high pressure and high temperature conditions. TaC and NbC carbides were formed when a large concentration of carbon was introduced while synthesizing the MoNbTaW alloy. Both FCC carbides and BCC CCA phases were detected in the sample compound at room temperature, in which the BCC phase was believed to have only refractory elements MoNbTaW while FCC carbide came from TaC and NbC. Carbides in the carbon doped MoNbTaW alloy were very stable since no phase transition was obtained even under 3.1 GPa and 870 °C by employing the resistor-heating diamond anvil cell (DAC) synchrotron X-ray diffraction technique. Via in situ examination, this study confirms the stability of carbides and MoNbTaW in the carbon doped CCA even under high pressure and high temperature.


2004 ◽  
Vol 3 (6) ◽  
pp. 389-393 ◽  
Author(s):  
Jung-Fu Lin ◽  
Olga Degtyareva ◽  
Charles T. Prewitt ◽  
Przemyslaw Dera ◽  
Nagayoshi Sata ◽  
...  

2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14603-14609 ◽  
Author(s):  
Xiaoli Huang ◽  
Fangfei Li ◽  
Qiang Zhou ◽  
Gang Wu ◽  
Yanping Huang ◽  
...  

In situ synchrotron X-ray diffraction with laser-heated diamond anvil cells study the EOS of Pt.


2001 ◽  
Vol 72 (2) ◽  
pp. 1289 ◽  
Author(s):  
Tetsu Watanuki ◽  
Osamu Shimomura ◽  
Takehiko Yagi ◽  
Tadashi Kondo ◽  
Maiko Isshiki

2010 ◽  
Vol 12 (12) ◽  
pp. 2059-2064 ◽  
Author(s):  
Björn Winkler ◽  
Erick A. Juarez-Arellano ◽  
Alexandra Friedrich ◽  
Lkhamsuren Bayarjargal ◽  
Florian Schröder ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 943-947 ◽  
Author(s):  
E. Otterstein ◽  
R. Nicula ◽  
J. Bednarčík ◽  
M. Stir ◽  
E. Burkel

Quasicrystals are aperiodic long-range ordered solids with a high potential for many modern applications. Interest is nowadays paid to the development of economically viable large-scale synthesis procedures of quasicrystalline materials involving solid-state transformations. The kinetics of the high-temperature phase transition from the complex ω-phase to the icosahedral quasicrystalline (iQC) ψ-phase in AlCuFe nanopowders was here examined by in-situ time-resolved X-ray diffraction experiments using synchrotron radiation. In-situ XRD experiments will allow insight on the influence of uniaxial applied pressure on the kinetics of phase transitions leading to the formation of single-phase QC nanopowders and further contribute to the optimization of sintering procedures for nano-quasicrystalline AlCuFe alloy powders.


2006 ◽  
Vol 21 (4) ◽  
pp. 320-322 ◽  
Author(s):  
P. Ch. Sahu ◽  
N. R. Sanjay Kumar ◽  
N. V. Chandra Shekar ◽  
N. Subramanian

An incident beam X-ray collimator for Mao-Bell type diamond anvil cell (DAC) has been developed. Alignment of the collimator is carried out in situ while viewing the image of the collimated X-ray spot formed on a thin layer of fluorescent material spread on the diamond anvil culets with the help of a microscope. Special precaution has been taken to meet the radiation safety requirements during alignment and routine use. This collimator is of immense help for laboratory based high pressure X-ray diffraction experiments.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


Sign in / Sign up

Export Citation Format

Share Document