Optimization of Mechanical Stiffness and Cell Density of 3D Bioprinted Cell-Laden Scaffolds Improves Extracellular Matrix Mineralization and Osteocyte-Like Cell Organization for Bone Tissue Engineering

2020 ◽  
Author(s):  
Jianhua Zhang ◽  
Esther Wehrle ◽  
Pavel Adamek ◽  
Graeme R. Paul ◽  
Xiao-Hua Qin ◽  
...  
Author(s):  
Seunghun S. Lee ◽  
Leanid Laganenka ◽  
Xiaoyu Du ◽  
Wolf-Dietrich Hardt ◽  
Stephen J. Ferguson

Silicon nitride (SiN [Si3N4]) is a promising bioceramic for use in a wide variety of orthopedic applications. Over the past decades, it has been mainly used in industrial applications, such as space shuttle engines, but not in the medical field due to scarce data on the biological effects of SiN. More recently, it has been increasingly identified as an emerging material for dental and orthopedic implant applications. Although a few reports about the antibacterial properties and osteoconductivity of SiN have been published to date, there have been limited studies of SiN-based scaffolds for bone tissue engineering. Here, we developed a silicon nitride reinforced gelatin/chitosan cryogel system (SiN-GC) by loading silicon nitride microparticles into a gelatin/chitosan cryogel (GC), with the aim of producing a biomimetic scaffold with antibiofilm and osteogenic properties. In this scaffold system, the GC component provides a hydrophilic and macroporous environment for cells, while the SiN component not only provides antibacterial properties and osteoconductivity but also increases the mechanical stiffness of the scaffold. This provides enhanced mechanical support for the defect area and a better osteogenic environment. First, we analyzed the scaffold characteristics of SiN-GC with different SiN concentrations, followed by evaluation of its apatite-forming capacity in simulated body fluid and protein adsorption capacity. We further confirmed an antibiofilm effect of SiN-GC against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as well as enhanced cell proliferation, mineralization, and osteogenic gene upregulation for MC3T3-E1 pre-osteoblast cells. Finally, we developed a bioreactor to culture cell-laden scaffolds under cyclic compressive loading to mimic physiological conditions and were able to demonstrate improved mineralization and osteogenesis from SiN-GC. Overall, we confirmed the antibiofilm and osteogenic effect of a silicon nitride reinforced cryogel system, and the results indicate that silicon nitride as a biomaterial system component has a promising potential to be developed further for bone tissue engineering applications.


2018 ◽  
Vol 6 (24) ◽  
pp. 4104-4115 ◽  
Author(s):  
Jenna N. Harvestine ◽  
Hakan Orbay ◽  
Jonathan Y. Chen ◽  
David E. Sahar ◽  
J. Kent Leach

Cell-secreted extracellular matrix potentiates osteogenic differentiation by stromal vascular fraction for bone tissue engineering.


ACS Omega ◽  
2020 ◽  
Vol 5 (49) ◽  
pp. 31943-31956
Author(s):  
Hanieh Nokhbatolfoghahaei ◽  
Zahrasadat Paknejad ◽  
Mahboubeh Bohlouli ◽  
Maryam Rezai Rad ◽  
Pouyan Aminishakib ◽  
...  

2017 ◽  
Vol 26 (9) ◽  
pp. 1496-1504 ◽  
Author(s):  
Denis Dufrane

Bone nonunion is a pathological condition in which all bone healing processes have stopped, resulting in abnormal mobility between 2 bone segments. The incidence of bone-related injuries will increase in an aging population, leading to such injuries reaching epidemic proportions. Tissue engineering and cell therapy using mesenchymal stem cells (MSCs) have raised the possibility of implanting living tissue for bone reconstruction. Bone marrow was first proposed as the source of stem cells for bone regeneration. However, as the quantity of MSCs in the bone marrow decreases, the capacity of osteogenic differentiation of bone marrow stem cells is also impaired by the donor’s age in terms of reduced MSC replicative capacity; an increased number of apoptotic cells; formation of colonies positive for alkaline phosphatase; and decreases in the availability, growth potential, and temporal mobilization of MSCs for bone formation in case of fracture. Adipose-derived stem cells (ASCs) demonstrate several advantages over those from bone marrow, including a less invasive harvesting procedure, a higher number of stem cell progenitors from an equivalent amount of tissue harvested, increased proliferation and differentiation capacities, and better angiogenic and osteogenic properties in vivo. Subcutaneous native adipose tissue was not affected by the donor’s age in terms of cellular senescence and yield of ASC isolation. In addition, a constant mRNA level of osteocalcin and alkaline phosphatase with a similar level of matrix mineralization of ASCs remained unaffected by donor age after osteogenic differentiation. The secretome of ASCs was also unaffected by age when aiming to promote angiogenesis by vascular endothelial growth factor (VEGF) release in hypoxic conditions. Therefore, the use of adipose cells for bone tissue engineering is not limited by the donor’s age from the isolation of stem cells up to the manufacturing of a complex osteogenic graft.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


Nanoscale ◽  
2015 ◽  
Vol 7 (37) ◽  
pp. 15349-15361 ◽  
Author(s):  
N. Sachot ◽  
M. A. Mateos-Timoneda ◽  
J. A. Planell ◽  
A. H. Velders ◽  
M. Lewandowska ◽  
...  

Nanostructured hybrid materials are an excellent option to create extracellular matrix-like environments for cell fate control in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document