A Recent Survey on Internet of Things (IoT) Communication Protocols

2021 ◽  
Author(s):  
Prabu P
Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1257
Author(s):  
Gabriel Eggly ◽  
Mariano Finochietto ◽  
Emmanouil Dimogerontakis ◽  
Rodrigo Santos ◽  
Javier Orozco ◽  
...  

Internet of Things (IoT) have become a hot topic since the official introduction of IPv6. Research on Wireless Sensors Networks (WSN) move towards IoT as the communication platform and support provided by the TCP/UDP/IP stack provides a wide variety of services. The communication protocols need to be designed in such a way that even simple microcontrollers with small amount of memory and processing speed can be interconnected in a network. For this different protocols have been proposed. The most extended ones, MQTT and CoAP, represent two different paradigms. In this paper, we present a CoAP extension to support soft real-time communications among sensors, actuators and users. The extension facilitates the instrumentation of applications oriented to improve the quality of life of vulnerable communities contributing to the social good.


2021 ◽  
pp. 133-149
Author(s):  
Maryna Kolisnyk

The subject of study in the paper is the analysis of technologies, architectures, vulnerabilities and cyberattacks, communication patterns of smart objects, messaging models, and Internet of Things (IoT) / Web of Things (WoT) protocols for solving applied problems of critical and non-critical systems. The goal is to develop a method for selecting messaging models and application-level protocols in non-critical and critical multi-level IoT/WoT systems, provided that the type of access to intelligent objects is initially determined by the initial data, as well as analysis of vulnerabilities and attacks using these protocols. Objectives: to formalize the procedure for choosing communication protocols for IoT/WoT systems; analyze possible vulnerabilities of communication protocols; develop a method for selecting communication protocols for given initial data, depending on the selected type of communication template for smart objects; check practically the proposed method. The methods of research are methods of system analysis. The following results were obtained. The analysis of the features of communication protocols is conducted by comparing the main interrelated characteristics of IoT/WoT, the results of which are presented in the form of a table. A method has been developed for selecting communication protocols, depending on the selected type of communication template. The analysis of possible vulnerabilities of communication protocols and possible attacks using these protocols is conducted. The author has tested the method using the example of a corporate system (Smart House) based on the WoT concept. Findings. The scientific novelty of the results obtained is as follows: the analysis conducted in the paper shows that currently there is no unified approach to the choice of a messaging model and application-level protocols for building IoT/WoT, depending on the selected type of communication template for smart objects. The method for selecting communication protocols for the given conditions (for each IoT system its interaction pattern will correspond, depending on which components interact with each other), improved by the authors of the paper, makes it possible to simplify the task of using separate protocols for given IoT systems, considering vulnerabilities of protocols.


2020 ◽  
Vol 14 (4) ◽  
pp. 113-133
Author(s):  
Mary Shamala L. ◽  
Zayaraz G. ◽  
Vivekanandan K. ◽  
Vijayalakshmi V.

Internet of things (IoT) is a global network of uniquely addressable interconnected things, based on standard communication protocols. As the number of devices connected to the IoT escalates, they are becoming a likely target for hackers. Also, the limited resources of IoT devices makes the security on top of the actual functionality of the device. Therefore, the cryptographic algorithm for such devices has to be devised as small as possible. To tackle the resource constrained nature of IoT devices, this article presents a lightweight cryptography algorithm based on a single permutation and iterated Even-Mansour construction. The proposed algorithm is implemented in low cost microcontrollers, thus making it suitable for a wide range of IoT nodes.


2019 ◽  
Vol 11 (3) ◽  
pp. 66 ◽  
Author(s):  
Samer Jaloudi

Most industrial and SCADA-like (supervisory control and data acquisition) systems use proprietary communication protocols, and hence interoperability is not fulfilled. However, the MODBUS TCP is an open de facto standard, and is used for some automation and telecontrol systems. It is based on a polling mechanism and follows the synchronous request–response pattern, as opposed to the asynchronous publish–subscribe pattern. In this study, polling-based and event-based protocols are investigated to realize an open and interoperable Industrial Internet of Things (IIoT) environment. Many Internet of Things (IoT) protocols are introduced and compared, and the message queuing telemetry transport (MQTT) is chosen as the event-based, publish–subscribe protocol. The study shows that MODBUS defines an optimized message structure in the application layer, which is dedicated to industrial applications. In addition, it shows that an event-oriented IoT protocol complements the MODBUS TCP but cannot replace it. Therefore, two scenarios are proposed to build the IIoT environment. The first scenario is to consider the MODBUS TCP as an IoT protocol, and build the environment using the MODBUS TCP on a standalone basis. The second scenario is to use MQTT in conjunction with the MODBUS TCP. The first scenario is efficient and complies with most industrial applications where the request–response pattern is needed only. If the publish–subscribe pattern is needed, the MQTT in the second scenario complements the MODBUS TCP and eliminates the need for a gateway; however, MQTT lacks interoperability. To maintain a homogeneous message structure for the entire environment, industrial data are organized using the structure of MODBUS messages, formatted in the UTF-8, and then transferred in the payload of an MQTT publish message. The open and interoperable environment can be used for Internet SCADA, Internet-based monitoring, and industrial control systems.


Author(s):  
Felipe Viel ◽  
Luis Augusto Silva ◽  
Valderi Leithardt ◽  
Gabriel Villarubia González ◽  
Raimundo Celeste Ghizoni Teive ◽  
...  

The evolution and miniaturization of the technologies for processing, storage, and communication have enabled computer systems to process a high volume of information and make decisions without human intervention. Within this context, several systems architectures and models have gained prominences, such as the Internet of Things (IoT) and Smart Grids (SGs). SGs use communication protocols to exchange information, among which the Open Smart Grid Protocol (OSGP) stands out. In contrast, this protocol does not have integration support with IoT systems that use some already consolidated communication protocols, such as the Constrained Application Protocol (CoAP). Thus, this work develops the integration of the protocols OSGP and CoAP to allow the communication between conventional IoT systems and systems dedicated to SGs. Results demonstrate the effectiveness of this integration, with the minimum impact on the flow of commands and data, making possible the use of the developed CoAP-OSGP Interface for Internet of Things (COIIoT).


Sign in / Sign up

Export Citation Format

Share Document