Measuring Radiation Enhanced Diffusion Through in situ Ion Radiation Induced Sintering of Oxide Nanoparticles

2021 ◽  
Author(s):  
Nathan J. Madden ◽  
Samuel A. Briggs ◽  
Diana Perales ◽  
Timothy J. Boyle ◽  
Khalid Hattar ◽  
...  
1983 ◽  
Vol 27 ◽  
Author(s):  
L. E. Rehn ◽  
N. Q. Lam ◽  
H. Wiedersich

ABSTRACTRoot-mean-square diffusion distances for both vacancy and interstitial defects in metals can be very large at elevated temperatures, e.g. several μm's in one second at 500°C. Consequently, defects that escape the implanted region at elevated temperature can produce compositional and microstructural changes to depths which are much larger than the ion range. Because of the high defect mobilities, and of the fact that diffusion processes must compete with the rate of surface recession, the effects of defect production (ballistic mixing), radiation-enhanced diffusion and radiation- induced segregation become spatially separated during ion bombardment at elevated temperature. Results of such experimental studies in a Cu-Ni alloy are presented, discussed and compared with predictions of a phenomenological model. Contributions to the subsurface compositional changes from radiation-enhanced diffusion and radiation- induced segregation are clearly identified.


Author(s):  
Kathleen B. Reuter

The Fe-Ni phase diagram is not well understood below 400°C. Of particular interest in this region is a disorder to order reaction whereby Fe-50 wt% Ni transforms from an FCC structure to an L1o superstructure. The kinetics of this transformation, however, are extremely slow (Table I). Therefore, to observe low-temperature transformations in the Fe-Ni system, extremely slow-cooled alloys must be studied (e.g., meteorites) or diffusion must be enhanced. One method to speed diffusion is irradiation. In 1962 Fe-50 wt% Ni was neutron irradiated; electrical resistivity measurements revealed a critical temperature (Tc)of 320°C. In 1977 Fe-50 wt% Ni was irradiated on a high voltage electron microscope (HVEM) and a T of 320°C was again found. A question arises, however, whether radiation enhanced diffusion or whether the radiation induced the transformation, causing a non-equilibrium ordered phase to form.


1985 ◽  
Vol 45 ◽  
Author(s):  
M. Rangaswamy ◽  
D. Farkas

ABSTRACTVarious models for predicting high fluence ion collection profiles are reviewed. Recent calculations based on the diffusion approximation are described. The solute and defect probability distributions are calculated by a MONTECARLO code, TRIM. The method takes into account the effects of sputtering, including preferential sputtering of one of the components, and lattice dilation. In addition, the effects of radiation enhanced diffusion and radiation induced segregation are also considered. The calculations include the coupling of solute and defect fluxes. The described formalism can account for observed maximum attainable concentrations and distributions in high fluence implantation conditions of practical interest.


1993 ◽  
Vol 311 ◽  
Author(s):  
R.R. Averback ◽  
Mai Ghaly ◽  
Y.Y. Lee ◽  
H. Zhu

ABSTRACTAtomic transport in irradiated solids has been investigated in both the prompt and delayed regimes. Prompt effects are revealed on an atomic level through molecular dynamics computer simulations. It is demonstrated that for metals like gold, which have high atomic numbers and low melting points, thermal spikes play a primary role in the cascade dynamics and that concepts like melting and rapid quenching are useful descriptions. Surface effects in these metals are also discussed. For metals with higher melting points and lower atomic numbers, the cascade dynamics are determined almost exclusively by energetic collisions far above thermal energies. This is illustrated by simulations of cascades in NiAl. The effect of the high ordering energy in this intermetallic compound on the radiation-induced defect structure has also been studied.Atomic transport in the delayed regime is illustrated by two examples: an order-disorder alloy, Cu3Au, and an amorphous alloy, NiZr. The first example is used to illustrate various aspects of radiation enhanced diffusion (RED): ion beam mixing, diffusion kinetics, the effects of primary recoil spectrum, and the importance of chemical order. The second example illustrates that the basic theory of RED, which was developed to describe crystalline materials, appears to work adequately for amorphous metal alloys, suggesting that similar mechanisms may be operating. It is shown, however, that the kinetics of RED observed in amorphous alloys are not unique to point defect models.


1985 ◽  
Vol 51 ◽  
Author(s):  
Nghi Q. Lam ◽  
Gary K. Leaf

ABSTRACTA kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al+ and Si+ ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.


1988 ◽  
Vol 128 ◽  
Author(s):  
Udo Scheuer ◽  
Lynn E. Rehn ◽  
Pete Baldo

ABSTRACTCrystalline Fe and Fe-10at.%Ti and amorphous Fe-37at.%Ti films with Ag and Hf markers were produced by vapor deposition. Marker spreading during ion-beam mixing between 77 K and 580 K was measured using Rutherford Back-scattering (RBS). Marker spreading was also measured between temperatures of 300 K to 700 K after full crystallization of the Fe-37at.%Ti films. Microstructural changes during ion-beam mixing were studied in situ, in a High-Voltage Electron Microscope. Homogeneous nucleation of a metastable bcc phase, was observed at high temperatures. The results are discussed in terms of their relevance to “radiation-enhanced” diffusion in amorphous materials.


1989 ◽  
Vol 4 (6) ◽  
pp. 1444-1449 ◽  
Author(s):  
Fu-Rong Ding ◽  
P. R. Okamoto ◽  
L. E. Rehn

Inert-gas markers, Rutherford backscattering, and x-ray diffraction were used to investigate solid-state interdiffusion in Ni/Zr and Au/Zr bilayer films as a function of temperature; microstructural studies during annealing were performed in situ, in a high-voltage electron microscope. Au, in contrast to Ni, is not an anomalously fast diffuser in crystalline Zr. Nevertheless, an amorphous product phase was found in both alloy systems for reaction temperatures  550 K; heterogeneous nucleation of the amorphous phase was observed in Au/Zr. The interdiffusion data reveal two distinct Arrhenius regimes, 330–∼470 K and ∼480–550 K, with quite different apparent activation enthalpies. These thermal interdiffusion results are compared with temperature dependent studies of ion-beam mixing in similar bilayer specimens. This comparison indicates that the enhanced efficiencies observed for ion-beam mixing above ∼480 K result from the as-prepared metastable microstructurc, and are not due to radiation-enhanced diffusion.


1989 ◽  
Vol 157 ◽  
Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
P.C. Stair ◽  
L.D. Marks

ABSTRACTRadiation damage in V2Os induced by electrons in the energy range 0-3 keV has been studied by high resolution electron microscopy, X-ray photoelectron spectroscopy and mass spectrometry. Different phase transformations were observed when V205 was irradiated by electrons of different energies. The damage kinetics and the role of electron radiation enhanced diffusion were investigated. It was found that nucleation and growth of lower oxides was driven by electron radiation enhanced diffusion.


1986 ◽  
Vol 1 (2) ◽  
pp. 251-267 ◽  
Author(s):  
Nghi Q. Lam ◽  
Gary K. Leaf

The evolution of the implant distribution during ion implantation at elevated temperatures has been theoretically studied using a comprehensive kinetic model. In the model foreign atoms, implanted into both interstitial and substitutional sites of the host lattice, could interact with implantation-induced point defects and with extended sinks such as the bombarded surface. The synergistic effects of preferential sputtering, radiation-enhanced diffusion, and radiation-induced segregation, as well as the influence of nonuniform defect production, were taken into account. The bombarded surface was allowed to move in either direction, − x or + x, depending on ion energy, i.e., on the competition between the rates of ion deposition and sputtering. The moving surface was accounted for by means of a mathematical technique of immobilizing the boundary. The ion implantation process was cast into a system of five coupled partial differential equations, which could be solved numerically using a suitable technique. Sample calculations were performed for two systems: Si+ and Al+ implantations into Ni. It has been known from previous studies that in irradiated Ni, Si atoms segregate in the same direction as the defect fluxes, whereas Al solutes migrate in the opposite direction. Thus the effects of different segregation mechanisms, as well as the influence of target temperature, ion energy, and implantation rate on the evolution of implant concentrations in time and space, could be examined with the present model.


Sign in / Sign up

Export Citation Format

Share Document