Principal Spatio-Temporal Mismatch and Electricity Price Patterns in a Highly-Decarbonised Networked European Electricity System

2021 ◽  
Author(s):  
Leon Joachim Schwenk-Nebbe ◽  
Jonas Emil Vind ◽  
August Jensen Backhaus ◽  
Marta Victoria ◽  
Martin Greiner
Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8349
Author(s):  
Alla Toktarova ◽  
Lisa Göransson ◽  
Filip Johnsson

In Europe, electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation, mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution, which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser, direct reduction shaft, electric arc furnace, as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions, we show that the electricity price following steel production reduces the total steel production cost by 23% and 17%, respectively, as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.


Author(s):  
Mads Raunbak ◽  
Timo Zeyer ◽  
Kun Zhu ◽  
Martin Greiner

Due to its spatio-temporal variability, the mismatch between the weather and demand patterns challenges the design of highly renewable energy systems. A principal component analysis is applied to a simplified networked European electricity system with a high share of wind and solar power generation. It reveals a small number of important mismatch patterns, which explain most of the system's required backup and transmission infrastructure. Whereas the first principal component is already able to reproduce most of the temporal mismatch variability for a solar dominated system, a few more principal components are needed for a wind dominated system. Due to its monopole structure the first principal component causes most of the system's backup infrastructure. The next few principal components have a dipole structure and dominate the transmission infrastructure of the renewable electricity network.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document