Artificial Recharge by Means of Careo Channels Versus Natural Aquifer Recharge in a Semi-Arid, High-Mountain Watershed (Sierra Nevada, Spain)

2021 ◽  
Author(s):  
Jorge Jódar ◽  
Thomas Zakaluk ◽  
Antonio González-Ramón ◽  
Ana Ruiz-Constán ◽  
Carlos Marín-Lechado ◽  
...  
2017 ◽  
Vol 593-594 ◽  
pp. 760-772 ◽  
Author(s):  
Jorge Jódar ◽  
José Antonio Cabrera ◽  
Sergio Martos-Rosillo ◽  
Ana Ruiz-Constán ◽  
Antonio González-Ramón ◽  
...  

2019 ◽  
Author(s):  
Kimberly Bowman ◽  
◽  
Eleana Brumage ◽  
Elizabeth Diaz ◽  
Daphne Kuta ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2013 ◽  
Vol 14 (2) ◽  
pp. 460-484 ◽  
Author(s):  
Paul J. Neiman ◽  
F. Martin Ralph ◽  
Benjamin J. Moore ◽  
Mimi Hughes ◽  
Kelly M. Mahoney ◽  
...  

Abstract Atmospheric rivers (ARs) are a dominant mechanism for generating intense wintertime precipitation along the U.S. West Coast. While studies over the past 10 years have explored the impact of ARs in, and west of, California’s Sierra Nevada and the Pacific Northwest’s Cascade Mountains, their influence on the weather across the intermountain west remains an open question. This study utilizes gridded atmospheric datasets, satellite imagery, rawinsonde soundings, a 449-MHz wind profiler and global positioning system (GPS) receiver, and operational hydrometeorological observing networks to explore the dynamics and inland impacts of a landfalling, flood-producing AR across Arizona in January 2010. Plan-view, cross-section, and back-trajectory analyses quantify the synoptic and mesoscale forcing that led to widespread precipitation across the state. The analyses show that a strong AR formed in the lower midlatitudes over the northeastern Pacific Ocean via frontogenetic processes and sea surface latent-heat fluxes but without tapping into the adjacent tropical water vapor reservoir to the south. The wind profiler, GPS, and rawinsonde observations document strong orographic forcing in a moist neutral environment within the AR that led to extreme, orographically enhanced precipitation. The AR was oriented nearly orthogonal to the Mogollon Rim, a major escarpment crossing much of central Arizona, and was positioned between the high mountain ranges of northern Mexico. High melting levels during the heaviest precipitation contributed to region-wide flooding, while the high-altitude snowpack increased substantially. The characteristics of the AR that impacted Arizona in January 2010, and the resulting heavy orographic precipitation, are comparable to those of landfalling ARs and their impacts along the west coasts of midlatitude continents.


2001 ◽  
Vol 33 (4) ◽  
pp. 426 ◽  
Author(s):  
I. Reche ◽  
E. Pulido-Villena ◽  
J. M. Conde-Porcuna ◽  
P. Carrillo

2015 ◽  
Vol 387 ◽  
pp. 106-121 ◽  
Author(s):  
Constance I. Millar ◽  
Robert D. Westfall ◽  
Angela Evenden ◽  
Jeffrey G. Holmquist ◽  
Jutta Schmidt-Gengenbach ◽  
...  

2021 ◽  
Author(s):  
Hoori Ajami ◽  
Adam Schreiner-McGraw

<p>Mountain System Recharge (MSR) is one of the main components of recharge in many arid and semi-arid aquifers, yet the mechanisms of MSR in high-elevation mountain ranges are poorly understood. The complexity of recharge processes and the lack of groundwater observations in mountain catchments contribute to this problem. MSR consists of two distinct pathways: 1) mountain bedrock aquifer recharge (MAR) consists of snowmelt or rainfall derived infiltration into the mountain bedrock, which either discharges to streams as baseflow or reaches an alluvial aquifer in an adjacent valley via lateral subsurface flow referred to as mountain block recharge (MBR), and 2) Mountain front recharge (MFR) consists of streamflow infiltration at the mountain front. Here, we apply streamflow recession analysis across 11 anthropogenically unaffected catchments in the Sierra Nevada to derive seasonally distinct storage-discharge functions and quantify MAR in response to changes in precipitation. Median annual recharge efficiencies (ratio of annual MAR to precipitation) range from 4 to 28% and can reach up to 60% during the wettest years on record. We implement a global sensitivity analysis to identify parameters that significantly impact MAR rates. Results illustrate that MAR estimates are mostly sensitive to the filter parameters for streamflow data selection used during the recession analysis, and the number of dry days after a rain event where streamflow data are excluded has the greatest impact. Our results demonstrate that storage-discharge functions are useful for quantifying groundwater recharge in mountainous catchments under perennial flow conditions. However, estimated MAR rates are impacted by the uncertainty in streamflow data, filtering of streamflow time series and model structure. Future work will be focused on quantifying uncertainty in MAR estimates caused from various sources.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document