scholarly journals Generating series of a new class of orthogonal Shimura varieties

2020 ◽  
Vol 14 (10) ◽  
pp. 2743-2772
Author(s):  
Eugenia Rosu ◽  
Dylan Yott
2018 ◽  
Vol 154 (10) ◽  
pp. 2090-2149 ◽  
Author(s):  
Stephan Ehlen ◽  
Siddarth Sankaran

Our aim is to clarify the relationship between Kudla’s and Bruinier’s Green functions attached to special cycles on Shimura varieties of orthogonal and unitary type, which play a key role in the arithmetic geometry of these cycles in the context of Kudla’s program. In particular, we show that the generating series obtained by taking the differences of the two families of Green functions is a non-holomorphic modular form and has trivial (cuspidal) holomorphic projection. Along the way, we construct a section of the Maaß lowering operator for moderate growth forms valued in the Weil representation using a regularized theta lift, which may be of independent interest, as it in particular has applications to mock modular forms. We also consider arithmetic-geometric applications to integral models of $U(n,1)$ Shimura varieties. Each family of Green functions gives rise to a formal arithmetic theta function, valued in an arithmetic Chow group, that is conjectured to be modular; our main result is the modularity of the difference of the two arithmetic theta functions. Finally, we relate the arithmetic heights of the special cycles to special derivatives of Eisenstein series, as predicted by Kudla’s conjecture, and describe a refinement of a theorem of Bruinier, Howard and Yang on arithmetic intersections against CM points.


2014 ◽  
Vol 150 (12) ◽  
pp. 1963-2002
Author(s):  
Siddarth Sankaran

AbstractWe consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the$q$-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprising divisors arising in the recent work of Kudla and Rapoport regarding cycles on Shimura varieties of unitary type. In the prequel to this paper, the author considered the geometry of the two families of cycles. These results are combined with the Archimedean calculations found in this work in order to establish the theorem. In particular, we obtain new examples of modular generating series whose coefficients lie in arithmetic Chow groups of Shimura varieties.


2009 ◽  
Vol 145 (5) ◽  
pp. 1147-1162 ◽  
Author(s):  
Xinyi Yuan ◽  
Shou-Wu Zhang ◽  
Wei Zhang

AbstractOn Shimura varieties of orthogonal type over totally real fields, we prove a product formula and the modularity of Kudla’s generating series of special cycles in Chow groups.


Author(s):  
Jan Hendrik Bruinier ◽  
Shaul Zemel

AbstractWe determine the behavior of automorphic Green functions along the boundary components of toroidal compactifications of orthogonal Shimura varieties. We use this analysis to define boundary components of special divisors and prove that the generating series of the resulting special divisors on a toroidal compactification is modular.


Astérisque ◽  
2020 ◽  
Vol 421 ◽  
pp. 7-125
Author(s):  
Jan H. Bruinier ◽  
Benjamin Howard ◽  
Stephen S. Kudla ◽  
Michael Rapoport ◽  
Tonghai Yang

Astérisque ◽  
2020 ◽  
Vol 421 ◽  
pp. 127-186
Author(s):  
Jan H. Bruinier ◽  
Benjamin Howard ◽  
Stephen S. Kudla ◽  
Michael Rapoport ◽  
Tonghai Yang

2015 ◽  
Vol 3 ◽  
Author(s):  
JAN HENDRIK BRUINIER ◽  
MARTIN WESTERHOLT-RAUM

We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition. They are formal analogs of Fourier–Jacobi expansions of Siegel modular forms. From our result and a theorem of Wei Zhang, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Sign in / Sign up

Export Citation Format

Share Document