scholarly journals Inhibitory Mechanism of Signal Transduction through Chicken Leptin Receptor by Suppressor of Cytokine Signaling 3 (SOCS3)

2013 ◽  
Vol 50 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Hiromi Adachi ◽  
Daisuke Murase ◽  
Takeshi Ohkubo
2012 ◽  
Vol 287 (43) ◽  
pp. 36509-36517 ◽  
Author(s):  
Julhash U. Kazi ◽  
Jianmin Sun ◽  
Bengt Phung ◽  
Fahad Zadjali ◽  
Amilcar Flores-Morales ◽  
...  

2004 ◽  
Vol 181 (1) ◽  
pp. 117-128 ◽  
Author(s):  
MA Torsoni ◽  
JB Carvalheira ◽  
VC Calegari ◽  
RM Bezerra ◽  
MJ Saad ◽  
...  

Angiotensin II exerts a potent dypsogenic stimulus on the hypothalamus, which contributes to its centrally mediated participation in the control of water balance and blood pressure. Repetitive intracerebroventricular (i.c.v.) injections of angiotensin II lead to a loss of effect characterized as physiological desensitization to the peptide's action. In the present study, we demonstrate that angiotensin II induces the expression of suppressor of cytokine signaling (SOCS)-3 via angiotensin receptor 1 (AT1) and JAK-2, mostly located at the median preoptic lateral and anterodorsal preoptic nuclei. SOCS-3 produces an inhibitory effect upon the signal transduction pathways of several cytokines and hormones that employ members of the JAK/STAT families as intermediaries. The partial inhibition of SOCS-3 translation by antisense oligonucleotide was sufficient to significantly reduce the refractoriness of repetitive i.c.v. angiotensin II injections, as evaluated by water ingestion. Thus, by acting through AT1 on the hypothalamus, angiotensin II induces the expression of SOCS-3 which, in turn, blocks further activation of the pathway and consequently leads to desensitization to angiotensin II stimuli concerning its dypsogenic effect.


2006 ◽  
Vol 20 (7) ◽  
pp. 1587-1596 ◽  
Author(s):  
Helle Frobøse ◽  
Sif Groth Rønn ◽  
Peter E. Heding ◽  
Heidi Mendoza ◽  
Philip Cohen ◽  
...  

Abstract IL-1 plays a major role in inflammation and autoimmunity through activation of nuclear factor κ B (NFκB) and MAPKs. Although a great deal is known about the mechanism of activation of NFκB and MAPKs by IL-1, much less is known about the down-regulation of this pathway. Suppressor of cytokine signaling (SOCS)-3 was shown to inhibit IL-1-induced transcription and activation of NFκB and the MAPKs JNK and p38, but the mechanism is unknown. We show here that SOCS-3 inhibits NFκB-dependent transcription induced by overexpression of the upstream IL-1 signaling molecules MyD88, IL-1R-activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFβ-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1.


2013 ◽  
Vol 27 (4) ◽  
pp. 586-597 ◽  
Author(s):  
Claudia Groba ◽  
Steffen Mayerl ◽  
Alies A. van Mullem ◽  
Theo J. Visser ◽  
Veerle M. Darras ◽  
...  

Abstract The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism.


FEBS Letters ◽  
1999 ◽  
Vol 453 (1-2) ◽  
pp. 63-66 ◽  
Author(s):  
Hélène Favre ◽  
Aurélie Benhamou ◽  
Joelle Finidori ◽  
Paul A. Kelly ◽  
Marc Edery

Sign in / Sign up

Export Citation Format

Share Document