scholarly journals Developmental formation of a diffusion barrier in the plasma membrane of the axonal initial segment : single lipid molecule approach

2000 ◽  
Vol 40 (supplement) ◽  
pp. S212
Author(s):  
C. Nakada ◽  
M. Nozaki ◽  
H. Yamashita ◽  
K. Yamaguchi ◽  
Ken Ritchie ◽  
...  
2001 ◽  
Vol 41 (supplement) ◽  
pp. S121
Author(s):  
C. Nakada ◽  
Kenneth Ritchie ◽  
T. Fujiwara ◽  
Y. Hotta ◽  
R. Iino ◽  
...  

2013 ◽  
Vol 203 (3) ◽  
pp. 381-383 ◽  
Author(s):  
Yael Eshed-Eisenbach ◽  
Elior Peles

A membrane barrier important for assembly of the nodes of Ranvier is found at the paranodal junction. This junction is comprised of axonal and glial adhesion molecules linked to the axonal actin–spectrin membrane cytoskeleton through specific adaptors. In this issue, Zhang et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201308116) show that axonal βII spectrin maintains the diffusion barrier at the paranodal junction. Thus, βII spectrin serves to compartmentalize the membrane of myelinated axons at specific locations that are determined either intrinsically (i.e., at the axonal initial segment), or by axoglial contacts (i.e., at the paranodal junction).


2010 ◽  
Vol 191 (2) ◽  
pp. 383-395 ◽  
Author(s):  
Anna Brachet ◽  
Christophe Leterrier ◽  
Marie Irondelle ◽  
Marie-Pierre Fache ◽  
Victor Racine ◽  
...  

In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Naomi AK Hanemaaijer ◽  
Marko A Popovic ◽  
Xante Wilders ◽  
Sara Grasman ◽  
Oriol Pavón Arocas ◽  
...  

Calcium ions (Ca2+) are essential for many cellular signaling mechanisms and enter the cytosol mostly through voltage-gated calcium channels. Here, using high-speed Ca2+ imaging up to 20 kHz in the rat layer five pyramidal neuron axon we found that activity-dependent intracellular calcium concentration ([Ca2+]i) in the axonal initial segment was only partially dependent on voltage-gated calcium channels. Instead, [Ca2+]i changes were sensitive to the specific voltage-gated sodium (NaV) channel blocker tetrodotoxin. Consistent with the conjecture that Ca2+ enters through the NaV channel pore, the optically resolved ICa in the axon initial segment overlapped with the activation kinetics of NaV channels and heterologous expression of NaV1.2 in HEK-293 cells revealed a tetrodotoxin-sensitive [Ca2+]i rise. Finally, computational simulations predicted that axonal [Ca2+]i transients reflect a 0.4% Ca2+ conductivity of NaV channels. The findings indicate that Ca2+ permeation through NaV channels provides a submillisecond rapid entry route in NaV-enriched domains of mammalian axons.


2022 ◽  
pp. 105609
Author(s):  
Rémi Bos ◽  
Khalil Rihan ◽  
Patrice Quintana ◽  
Lara El-Bazzal ◽  
Nathalie Bernard-Marissal ◽  
...  

1968 ◽  
Vol 38 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Sanford L. Palay ◽  
Constantino Sotelo ◽  
Alan Peters ◽  
Paula M. Orkand

Axon hillocks and initial segments have been recognized and studied in electron micrographs of a wide variety of neurons. In all multipolar neurons the fine structure of the initial segment has the same pattern, whether or not the axon is ensheathed in myelin. The internal structure of the initial segment is characterized by three special features: (a) a dense layer of finely granular material undercoating the plasma membrane, (b) scattered clusters of ribosomes, and (c) fascicles of microtubules. A similar undercoating occurs beneath the plasma membrane of myelinated axons at nodes of Ranvier. The ribosomes are not organized into Nissl bodies and are too sparsely distributed to produce basophilia. They vanish at the end of the initial segment. Fascicles of microtubules occur only in the axon hillock and initial segment and nowhere else in the neuron. Therefore, they are the principal identifying mark. Some speculations are presented on the relation between these special structural features and the special function of the initial segment.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S28
Author(s):  
C. Nakada ◽  
Kenneth Ritchie ◽  
T. Fujiwara ◽  
Y. Hotta ◽  
R. Iino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document