scholarly journals Environmental geochemistry of the copper slag old dump in the Middle Urals

2020 ◽  
Vol 1 (2) ◽  
pp. 103-109
Author(s):  
Ekaterina Sergeevna ZOLOTOVA ◽  
◽  
Niktor Fedorovich RYABININ ◽  

Relevance of the work. Wastes from mining and processing industries occupy vast areas and cause serious environmental damage. The research results will contribute to the development of biological reclamation of industrial areas and environmental monitoring. Purpose of the work: study of the geochemical features of soils and plants formed on old slags of the Polevsky copper smelter (Middle Urals). Methods of the study. We laid the plot in the relatively flat section of the base of the steep slope of the dump. Complex samples were taken at equal intervals on the transect and included blocks of technogenic soil along with growing plants. The material of the complex sample was divided into fractions by nature (soil, plants) and by size of fragments of copper smelting slag, dried to air-dry state and weighed. The chemical composition of the samples was determined by inductively coupled plasma mass spectrometry. Results. The man-made soil with a thickness of 10–15 cm has formed on the cast copper smelting slag old dump. More than a third of its mass is fine soil (particles less than 1 mm), which is a sorption geochemical barrier. The most elements concentration in fine soil is 1–2 orders of magnitude higher than their concentration in slag stone. Lead, cadmium, bismuth are especially effectively delayed. In the fine soil, the strongest excesses of the maximum permissible concentrations for all regulated elements have been established. It has been confirmed that under unlimited supply conditions of elements migration from slag, plant has an upper accumulation threshold. For the aboveground plant parts, the highest values of the biological absorption coefficient were found for selenium, potassium, calcium, and phosphorus. Conclusions. An environmental assessment of the Polevsky smelter (Middle Urals) old dump was carried out, the geochemical features of the soil and plants were investigated.

Author(s):  
Urtnasan Erdenebold ◽  
Jei-Pil Wang

Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag is generated annually in Korea. Oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe­2O3), silica (SiO­2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). Main oxides in copper slag, which iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since the copper smelting slag contains high content of iron, and copper and zinc. Common applications of copper smelting slag are the value added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc., as well as the some studies have attempted to recover metal values from copper slag. This research was intended to recovery Fe-Cu alloy, raw material of zinc and produce reformed slag like a blast furnace slag for blast furnace slag cement from copper slag. As a results, it was confirmed that reduction smelting by carbon at temperatures above 1400°С is possible to recover pig iron containing copper from copper smelting slag, and CaO additives in the reduction smelting assist to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag. Copper oxide in the slag can be easily reduced and dissolved in the molten pig iron, and zinc oxide is also reduced to a volatile zinc, which is removed from the furnace as the fumes, by carbon during reduction process. When CaO addition is above 5wt.%, acid slag has been completely transformed to calcium silicate slag and observed like blast furnace slag.


2020 ◽  
Vol 12 (4) ◽  
pp. 1421
Author(s):  
Jei-Pil Wang ◽  
Urtnasan Erdenebold

Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag are generated annually in Korea. The oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2O3), silica (SiO2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). The main oxides in copper slag, which are iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since copper smelting slag contains high content of iron, and copper and zinc, common applications of copper smelting slag can be used in value-added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc. Some studies have attempted to recover metal values from copper slag. This research was intended to recover ferrous alloy contained Cu, a raw material of zinc, from copper slag, and produce reformed slag such as blast furnace slag for Portland cement. As a result, it was confirmed that with reduction smelting by carbon at temperatures above 1400 °C, it is possible to recover pig iron containing copper from copper smelting slag, and the addition of CaO in reduction smelting helped to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag. The copper oxide in the slag can be easily reduced and dissolved in the molten pig iron, and zinc oxide is also reduced to a volatile zinc, which is removed from the furnace as fumes, by carbon during the reduction process. When CaO addition is above 5%, acid slag is completely transformed into calcium silicate slag and is observed to be like blast furnace slag.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Seung-Hwan Shin ◽  
Sun-Joong Kim

At present, copper smelting slag is not effectively recycled and is wasted. Copper smelting slag contains FexO at more than 40 mass%. For the utilization of copper slag as a Fe resource, it is necessary to separate the Cu in the slag. For copper recycling from slag, FeS-based matte can be introduced to use sulfurization to concentrate Cu from the slag into the sulfide and finally recover the copper. In a previous paper, a kinetic model was developed to simulate the coupled reactions between the multicomponent slag and FeS-based matte by using previously reported thermodynamic data. Building on this work, we carried out equilibrium experiments to supplement the thermodynamic data used in the previously developed model. An empirical formula for the Cu2O activity coefficient of Cu2O-FeOX-CaO-MgO-SiO2-Al2O3 system slag was obtained. In addition, the effect of alumina content in the slag on the Cu2O activity coefficient in the slag was investigated. The model was also supplemented to account for MgO solubility. By the developed model and the industrial conditions, we investigated the effect of slag composition on the behavior of Cu between matte and Cu2O-FeOX-CaO-MgO-SiO2-Al2O3 system slag for the copper loss.


LITOSFERA ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 717-726
Author(s):  
E. S. Zolotova ◽  
V. F. Ryabinin ◽  
A. L. Kotelnikova ◽  
N. S. Ivanova

Research subject. In this paper, we investigate the possibility of recycling wastes from copper smelting facilities in brown mountain forest soils. The research object was “technical sand” obtained at the Sredneuralsky copper smelter as a byproduct. This finely dispersed material rich in copper, zinc and other chalcophilic elements undergo mechanical activation during crushing of the cast slag.Materials and methods. Experiments were carried out in the southern taiga district of the Trans-Ural hilly-foothill province (Middle Urals) in autumn before snow cover. Two types of forest areas identified according to the genetic forest typology were investigated: cowberry shrub pine forest and berry pine forest with linden, both under trees and in clear-cutting areas. The experiments involved scattering 1kg of waste across 1m2 of experimental soil, packing such a sand in 100 g packages made of non-woven material and burying these packages in 3 experimental plots a depth of 7–10 cm. Following 2 years, the packages were retrieved and weighed. The microelement analysis of soil samples was carried out by the method of inductively coupled plasma mass-spectrometry using an Elan-9000 ICP mass-spectrometer at the Geoanalitik center of the Institute of Geology and Geochemistry, Ural Branch of RAS.Results. It was found that, after 2 years of residing in the soil, copper smelting waste slag loses 11% of its mass. The majority of chalcophilic elements are involved in the biogeochemical cycle. The content of zinc, arsenic, cadmium and selenium varies most signfificantly. A difference in the degree of element migration from the “technical sand” to the brown mountain forest soil was observed for 2 forest types and clear-cutting areas. A single surface application of mineral waste (1 kg/m2 ) in autumn did not affect the qualitative composition of the grassy layer of all forest types and clear-cutting areas in the following spring–summer period.Conclusion. The findings can be of interest for specialists developing new methods for recycling mineral wastes from copper smelters. Future research should analyse the distribution of components migrating from the “technical sand” along the soil profile of forest soils, as well as their involvement in biogeochemical cycles.


2020 ◽  
Vol 28 (1) ◽  
pp. 1141-1150
Author(s):  
Ekaterina S. Zolotova ◽  
Natalya S. Ivanova ◽  
Viktor F. Ryabinin ◽  
Sezgin Ayan ◽  
Alla L. Kotelnikova

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Krzysztof Gargul ◽  
Bożena Boryczko ◽  
Andżelika Bukowska ◽  
Adam Hołda ◽  
Stanisław Małecki ◽  
...  

AbstractThere are only a few smelters processing copper concentrates directly into blister copper. Despite the many advantages of this process, a serious challenge of this technology is the need to process the resulting flash smelting slag. It contains 12–15% copper and 2.5–4% lead. In this form, it cannot be considered as waste material and, therefore, a high-temperature reduction process is carried out. This decopperization process is energy- and time-consuming. The use of mineralurgical and hydrometallurgical processes, selective enrichment of the appropriate slag fractions in copper and lead, followed by its hydrometallurgical processing and recovery of Cu and Pb could be an interesting supplement to the methods used so far. The article presents results of research on the possibility of separation of useful components from copper slag using the original method of sieve analysis, gravitational enrichment and magnetic separation. Preliminary results of tests were made on a laboratory scale. Then, selective leaching of copper and lead from flash smelting slag was carried out, obtaining very promising results.


2010 ◽  
Vol 16 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Visa Tasic ◽  
Novica Milosevic ◽  
Renata Kovacevic ◽  
Nevenka Petrovic

The main aim of this paper is to present analyses of temporal variations of particulate matter in Bor (Serbia) influenced by copper production at the Copper Smelter Complex Bor. Particulate emissions are of concern because the presence of fine particles (PM2.5 - particles with diametar less than 2.5 ?m) and ultrafine particles (PM0.1 - particles with diametar less than 0.1 ?m) assume higher risk for human health. Such particles can penetrate deeper into respiratory organs and, at the same time, a probability for such penetration and deposition in the respiratory system is greater. The analysis is based on comparison of SO2 and PM measurements at several locations in the area of Bor town in the close vicinity of Copper Smelter. PM concentrations were highly correlated with sulfur dioxide and inversely correlated with local wind speed during pollution episodes. Presented results indicate that the dominant source of coarse and fine particles in Bor town is the Copper Smelting Complex Bor. The most significant factors for particulate matter distribution are meteorological parameters of wind speed and direction. It was found that exceeding of daily limit values of concentrations of PM10 (50 ?g/m3) usually occurs due to very high concentrations in a period of several hours during the day.


2020 ◽  
Vol 9 (6) ◽  
pp. 13625-13634
Author(s):  
Zulfiadi Zulhan ◽  
Irfan Muhammad Fauzian ◽  
Taufiq Hidayat

Sign in / Sign up

Export Citation Format

Share Document