scholarly journals A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material

2020 ◽  
Vol 12 (4) ◽  
pp. 1421
Author(s):  
Jei-Pil Wang ◽  
Urtnasan Erdenebold

Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag are generated annually in Korea. The oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2O3), silica (SiO2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). The main oxides in copper slag, which are iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since copper smelting slag contains high content of iron, and copper and zinc, common applications of copper smelting slag can be used in value-added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc. Some studies have attempted to recover metal values from copper slag. This research was intended to recover ferrous alloy contained Cu, a raw material of zinc, from copper slag, and produce reformed slag such as blast furnace slag for Portland cement. As a result, it was confirmed that with reduction smelting by carbon at temperatures above 1400 °C, it is possible to recover pig iron containing copper from copper smelting slag, and the addition of CaO in reduction smelting helped to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag. The copper oxide in the slag can be easily reduced and dissolved in the molten pig iron, and zinc oxide is also reduced to a volatile zinc, which is removed from the furnace as fumes, by carbon during the reduction process. When CaO addition is above 5%, acid slag is completely transformed into calcium silicate slag and is observed to be like blast furnace slag.

Author(s):  
Urtnasan Erdenebold ◽  
Jei-Pil Wang

Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag is generated annually in Korea. Oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe­2O3), silica (SiO­2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). Main oxides in copper slag, which iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since the copper smelting slag contains high content of iron, and copper and zinc. Common applications of copper smelting slag are the value added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc., as well as the some studies have attempted to recover metal values from copper slag. This research was intended to recovery Fe-Cu alloy, raw material of zinc and produce reformed slag like a blast furnace slag for blast furnace slag cement from copper slag. As a results, it was confirmed that reduction smelting by carbon at temperatures above 1400°С is possible to recover pig iron containing copper from copper smelting slag, and CaO additives in the reduction smelting assist to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag. Copper oxide in the slag can be easily reduced and dissolved in the molten pig iron, and zinc oxide is also reduced to a volatile zinc, which is removed from the furnace as the fumes, by carbon during reduction process. When CaO addition is above 5wt.%, acid slag has been completely transformed to calcium silicate slag and observed like blast furnace slag.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2131 ◽  
Author(s):  
G.U. Ryu ◽  
G.M. Kim ◽  
Hammad R. Khalid ◽  
H.K. Lee

Blast furnace slag, an industrial by-product, is emerging as a potential raw material to synthesize hydroxyapatite and zeolite. In this study, the effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite from blast furnace slag were investigated. Specimens were synthesized at different temperatures (room temperature, 50, 90, 120, or 150 °C). The synthesized specimens were analyzed qualitatively and quantitatively via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET/BJH, and scanning electron microscopy/energy dispersive using X-ray analysis (SEM/EDX). It was found that the hydroxyapatite phase was synthesized at all the reaction temperatures, while faujasite type zeolite appeared in the specimens synthesized at 90 and 120 °C. Moreover, faujasite was replaced by hydroxysodalite in the specimens synthesized at 150 °C. Additionally, the crystals of the hydroxyapatite tended to become larger and total crystallinity increased as the reaction temperature increased.


2014 ◽  
Vol 937 ◽  
pp. 462-464 ◽  
Author(s):  
Wei You ◽  
Yan Mei Jiang ◽  
Qian Lin ◽  
Xiao Xia Yu ◽  
Peng Fei Li ◽  
...  

The blast furnace slag is an industrial solid waste in the production process, this paper deals with the blast furnace slag as products -- artificial jade cup handicraft lost wax casting process of high additional value of main raw material, firstly analyses the production process of chemical composition and artificial jade common blast furnace slag and natural jade, then the detailed design of the lost wax casting process of artificial jade cup, including manufacturing, shell mould manufacturing, dewaxing, baking, imitation jade material melting and casting. The lost wax casting method for producing artificial jade crafts complex products, the added value of products, so as to achieve a high added value utilization of blast furnace slag.


Refractories ◽  
1977 ◽  
Vol 18 (11-12) ◽  
pp. 722-728
Author(s):  
N. V. Pitak ◽  
R. S. Shulyak ◽  
R. M. Fedoruk ◽  
T. P. Khmelenko ◽  
B. N. Starshinov ◽  
...  

2020 ◽  
Vol 44 (6) ◽  
pp. 433-439
Author(s):  
Vijayasarathy Rathanasalam ◽  
Jayabalan Perumalsami ◽  
Karthikeyan Jayakumar

This paper presents the properties of blended geopolymer concrete manufactured using fly ash and ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS), along with the copper slag (CPS) as replacement of fine aggregate (crushed stone sand). Various parameters considered in this study include different sodium hydroxide concentrations (10M, 12M and 14M); 0.35 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured in ambient curing condition. Further, geopolymer concrete was manufactured using fly ash as the prime source material which is replaced with UFGGBFS (0%, 5%, 10% and 15%). Copper slag has been used as replacement of fine aggregate in this study. Properties of the fresh manufactured geopolymer concrete were studied by slump test. Compressive strength of the manufactured geopolymer concrete was tested and recorded after curing for 3, 7 and 28 days. Microstructure Characterization of Geopolymer concrete specimens was done by Scanning Electron Microscope (SEM) analysis. Experimental results revealed that the addition of UFGGBFS resulted in an increased strength performance of geopolymer concrete. Also, this study demonstrated that the strength of geopolymer concrete increased with an increase in sodium hydroxide concentration. SEM results revealed that the addition of UFGGBFS resulted in a dense structure.


2019 ◽  
Vol 38 (2019) ◽  
pp. 726-732 ◽  
Author(s):  
Yi-ci Wang ◽  
Wen-bin Xin ◽  
Xiao-geng Huo ◽  
Guo-ping Luo ◽  
Fang Zhang

AbstractIn this study, the blast furnace slag of the Baotou Steel and Iron Company was used as the main raw material to prepare glass ceramics with diopside as the main crystal phase. The composition of the parent glass was designed by thermodynamic calculations with FactSage software. Small amounts of the nucleation agent Cr2O3 were then added to the parent glass to induce crystallization. Differential thermal analysis was used to determine the nucleation and crystallization temperatures of the glasses, and scanning electron microscopy and X-ray diffraction were adopted to determine the microstructures and phase compositions of the glasses after heat treatment, respectively. The results showed that glass ceramics of the diopside phase can be prepared with up to 73 wt% blast furnace slag when 1.44–1.91 wt% Cr2O3 is added, and the ceramics have uniform compact grains and a high bending strength of about 84.6–101.7 MPa. In addition, the mechanical properties are better than those of natural marble and granite. These results provide basic information and a scientific basis for industrial production of diopside glass ceramics using molten blast furnace slag as the main raw material.


2019 ◽  
Vol 138 (6) ◽  
pp. 4571-4583
Author(s):  
Anna A. Kuśnierz ◽  
Magdalena Szumera ◽  
Magda Kosmal ◽  
Paweł Pichniarczyk

Abstract A glass set with a high content of blast-furnace slag and a reduced amount of traditional raw materials requires optimization of the raw material composition and adjustment of its specificity to the temperature regime of melting, homogenizing and clarifying the glass mass. The introduction of an increased amount of blast-furnace slag allows to reduce the cost of raw materials: soda, limestone and high-class sand, reduce energy costs, whose consumption significantly decreases and reduces CO2 emissions in line with EU requirements. The tests of thermal analysis of a glass set with different contents of Calumite are aimed at learning the mechanism of its operation by determining the changes caused by its different presence in the course of subsequent reactions between the components of the glass set. Analysis of the influence of the addition of different Calumite slag contents treated as a substitute for the raw material on the melting process of glassware sets was analyzed. The tests were carried out using differential thermal analysis (DTA) and thermogravimetry (TG) based on the model glass [mass%]: 73.0% SiO2, 1.0% Al2O3, 10.0% CaO, 2.0% MgO and 14.0% Na2O. The effect of combining Calumite with sulphate and multi-component fining agent—mixtures of As2O3, Sb2O3, NaNO3 in proportions of 1:1:1 for chemical reaction and phase transformation, was investigated.


2013 ◽  
Vol 818 ◽  
pp. 68-71 ◽  
Author(s):  
Dominik Gazdič

Within the work the questions of the slag-sulphate binder preparation were solved. It was specifically a monitoring of obtained technological properties and course of the hydration process in dependence on dosing ratio of particular binder components. A finely ground Stramberk blast furnace slag was the basic raw material to which Polish natural anhydrite was added together with Portland cement CEM I 42,5 N as alkaline exciter.


2015 ◽  
Vol 30 (3) ◽  
pp. 374-380 ◽  
Author(s):  
Jie Li ◽  
Weixing Liu ◽  
Yuzhu Zhang ◽  
Aimin Yang ◽  
Kai Zhao

Sign in / Sign up

Export Citation Format

Share Document